Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 131(8): 1362-1376, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38053387

ABSTRACT

Nutrition knowledge (NK) impacts food choices and may be improved through educational programmes. Identifying knowledge gaps related to NK among adolescent athletes may guide future nutrition education programmes. This review aimed to systematically review the level of NK in adolescent athletes based on the currently available published literature. The protocol for this review was registered with PROSPERO (CRD42022321765). A literature search was conducted in April 2022 using MEDLINE, CINAHL, SPORTDiscus, Web of Science and SCOPUS databases. The study design was not restricted, provided that a quantitative NK score was reported for adolescent athletes. Studies were limited to the English language and published between 2010 and April 2022. Studies were assessed for quality and risk of bias using the Academy of Nutrition and Dietetics Quality Appraisal Checklist. Data extracted included demographics, questionnaire name, number of items, validation status and mean total and subsection NK scores. Meta-analyses were inappropriate due to the heterogeneity of NK assessment tools; therefore, results were presented narratively. Thirty-two studies that assessed NK of 4553 adolescent athletes and 574 comparison participants were included. Critical appraisal of studies resulted in neutral rating 'moderate quality' for most (n 30) studies. Studies lacked justification for sample size and often used inadequately validated questionnaires. NK scores ranged from poor (33·3 %) to excellent (90·6 %). The level of NK across studies is difficult to determine due to heterogenous questionnaires often lacking appropriate validation. NK should be assessed using tools validated in the relevant population or revalidated tools previously used for other populations.


Subject(s)
Nutrition Therapy , Sports Nutritional Sciences , Humans , Adolescent , Dietary Supplements , Athletes , Food Preferences
2.
Eur J Appl Physiol ; 123(2): 351-359, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36284024

ABSTRACT

PURPOSE: Following resistance exercise, uncertainty exists as to whether the regular application of cold water immersion attenuates lean muscle mass increases in athletes. The effects of repeated post-resistance exercise cold versus hot water immersion on body composition and neuromuscular jump performance responses in athletes were investigated. METHODS: Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week (4-week × 3-intervention, i.e., control [CON], cold [CWI] or hot [HWI] water immersion) resistance exercise programme, utilising a randomised cross-over pre-post-design. Body composition measures were collected using dual-energy X-ray absorptiometry prior to commencement and every fourth week thereafter. Neuromuscular squat (SJ) and counter-movement jump (CMJ) performance were measured weekly. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. RESULTS: There were no changes in lean (p = 0.960) nor fat mass (p = 0.801) between interventions. CON (p = 0.004) and CWI (p = 0.003) increased (g = 0.08-0.19) SJ height, compared to HWI. There were no changes in CMJ height (p = 0.482) between interventions. CONCLUSION: Repeated post-resistance exercise whole-body CWI or HWI does not attenuate (nor promote) increases in lean muscle mass in athletes. Post-resistance exercise CON or CWI results in trivial increases in SJ height, compared to HWI. During an in-season competition phase, our data support the continued use of post-resistance exercise whole-body CWI by athletes as a recovery strategy which does not attenuate body composition increases in lean muscle mass, while promoting trivial increases in neuromuscular concentric-only squat jump performance.


Subject(s)
Resistance Training , Humans , Male , Rugby , Cross-Over Studies , Immersion , Seasons , Water , Body Composition , Cold Temperature
3.
Front Nutr ; 6: 163, 2019.
Article in English | MEDLINE | ID: mdl-31681789

ABSTRACT

Introduction: Recent evidence suggests that the consumption of essential amino acids (AA) and/or those abundantly present in collagen may have the capacity to influence the synthesis of new collagen in ligaments and tendons, when tissue perfusion is optimized (e.g., during exercise). However, little is currently known about the bioavailability of these AAs in blood after the consumption of various collagen and diary protein sources: such information is needed to develop potentially useful dietary and supplement intake strategies. Objectives: The aim of the current study was to characterize blood AA concentrations in response to consumption of collagen and dairy protein sources; specifically, maximum concentrations, the timing of maximum concentration, and total (area under the curve) exposure above baseline. Methods: A 20 g serve of various dairy and collagen proteins, and a 300 mL serve of bone broth were consumed by healthy, recreationally active males after an overnight fast. Blood samples were drawn every 20 min for a total of 180 min, for analysis of plasma AA concentrations. Total AA, essential AA and collagen specific AAs were analyzed for maximum concentration, timing of peak, and area under the curve. Results: In general, protein intake was associated with a similar increase in total and collagen specific AAs, except for collagen proteins being a superior source of glycine (683 ± 166 µmol/L) compared to 260 ± 65 µmol/L for dairy proteins (P < 0.0001), whilst dairy proteins were a superior source of leucine (267 ± 77 µmol/L) compared to 189 ± µmol/L for collagen proteins (P < 0.04). Although there were several differences in the bioavailability of hydrolysed compared to non-hydrolysed proteins, this only reached statistical significance within the dairy proteins, but not for collagen proteins. Conclusions: The intake of collagen proteins result in higher plasma peaks of glycine, whilst the intake of dairy proteins result in higher plasma peaks of leucine. This information may support further investigations, and identification of key AAs that may support exercise in the synthesis of collagen.

4.
Int J Sport Nutr Exerc Metab ; 29(5): 461-465, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31444314

ABSTRACT

The urinary excretion of hydroxyproline (Hyp), abundant in collagen protein, may serve as a biomarker of habitual collagen intake, assisting with investigations of current interest in the role of dietary collagen intake in supporting the synthesis of collagenous body tissues. This study investigated the time course of urinary Hyp excretion in "free-living," healthy, active males following the ingestion of a standardized bolus (20 g) of collagenous (gelatin and a hydrolyzed collagen powder) and dairy (calcium caseinate and hydrolyzed casein) proteins. The excretion of Hyp was assessed over a 24-hr period, separated into three collection periods: 0-6, 6-12, and 12-24 hr. Hyp was elevated for 0-6 hr after the consumption of collagen-containing supplements (gelatin 31.3 ± 8.8 mmol/mol and hydrolyzed collagen 33.7 ± 22.0 mmol/mol vs. baseline: gelatin 2.4 ± 1.7 mmol/mol and hydrolyzed collagen 2.8 ± 1.5 mmol/mol; p < .05), but not for the dairy protein supplements (calcium caseinate 3.4 ± 1.7 mmol/mol and hydrolyzed casein 4.0 ± 3.7 mmol/mol; p > .05). Therefore, urinary Hyp reflects an acute intake of collagenous protein, but is not suitable as a biomarker for quantifying habitual collagen intake, provided through regular dietary practices in "free-living," healthy, active males.


Subject(s)
Collagen/administration & dosage , Hydroxyproline/urine , Sports Nutritional Physiological Phenomena , Adult , Biomarkers/urine , Caseins , Cross-Over Studies , Dietary Supplements , Eating , Humans , Male
5.
Int J Sport Nutr Exerc Metab ; 29(3): 265-272, 2019 May 01.
Article in English | MEDLINE | ID: mdl-29893587

ABSTRACT

Intake of dietary sources of collagen may support the synthesis of collagen in varying tissues, with the availability of key amino acids being a likely contributor to its effectiveness. This study analyzed commonly consumed preparations of bone broth (BB) to assess the amount and consistency of its amino acid content. Commercial and laboratory-prepared samples, made with standardized and variable (nonstandardized) protocols, were analyzed for key amino acids (glycine, lysine, proline, leucine, hydroxyproline, and hydroxylysine). The main finding of this study was that amino acid concentrations in BB made to a standardized recipe were significantly lower for hydroxyproline, glycine, and proline (p = .003) and hydroxylysine, leucine, and lysine (p = .004) than those provided by a potentially therapeutic dose (20 g) of reference collagen supplements (p > .05). There was a large variability in the amino acid content of BB made to nonstandardized recipes, with the highest levels of all amino acids found within the café-prepared varieties. For standardized preparations, commercial BBs were lower in all amino acids than the self-prepared varieties. There were no differences (p > .05) in the amino acid content of different batches of BB when prepared according to a standardized recipe. If the intake of collagen precursors is proven to support the synthesis of new collagen in vivo, it is unlikely that BB can provide a consistently reliable source of key amino acids. Research on the provision of key amino acids from dietary sources should continue to focus on the standard sources currently being researched.


Subject(s)
Collagen/administration & dosage , Dietary Supplements , Amino Acids , Animals , Bone and Bones/chemistry , Cattle , Chickens , Cooking , Meat
SELECTION OF CITATIONS
SEARCH DETAIL
...