Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; 68(4): e0155923, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38497616

ABSTRACT

Leishmaniasis remains one of the main public health problems worldwide, with special incidence in the poorest populations. Selenium and its derivatives can be potent therapeutic options against protozoan parasites. In this work, 17 aryl selenoates were synthesized and screened against three species of Leishmania (Leishmania major, Leishmania amazonensis, and Leishmania infantum). Initial screening in promastigotes showed L. infantum species was more sensitive to selenoderivatives than the others. The lead Se-(2-selenocyanatoethyl) thiophene-2-carboselenoate (16) showed a half-maximal effective concentration of 3.07 µM and a selectivity index > 32.57 against L. infantum promastigotes. It was also the most effective of all 17 compounds, decreasing the infection ratio by 90% in L. infantum-infected macrophages with amastigotes at 10 µM. This aryl selenoate did not produce a hemolytic effect on human red blood cells at the studied doses (10-100 µM). Furthermore, the gene expression of infected murine macrophages related to cell death, the cell cycle, and the selenoprotein synthesis pathway in amastigotes was altered, while no changes were observed in their murine homologs, supporting the specificity of Compound 16 against the parasite. Therefore, this work reveals the possible benefits of selenoate derivatives for the treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmania mexicana , Leishmaniasis , Animals , Mice , Humans , Leishmaniasis/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Gene Expression , Mice, Inbred BALB C
2.
Acta Trop ; 233: 106547, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35667455

ABSTRACT

Current treatment for Chagas disease is based on only two drugs: benznidazole and nifurtimox. Compounds containing sulfur (S) in their structure have shown promising results in vitro and in vivo against Trypanosoma cruzi, the parasite causing Chagas disease. Notably, some reports show that the isosteric replacement of S by selenium (Se) could be an interesting strategy for the development of new compounds for the treatment of Chagas disease. To date, the activity against T. cruzi of three Se- containing groups has been compared with their S counterparts: selenosemicarbazones, selenoquinones, and selenocyanates. More studies are needed to confirm the positive results of Se compounds. Therefore, we have investigated S compounds described in the literature tested against T. cruzi. We focused on those tested in vivo that allowed isosteric replacement to propose their Se counterparts as promising compounds for the future development of new drugs against Chagas disease.


Subject(s)
Chagas Disease , Selenium , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Chagas Disease/parasitology , Humans , Selenium/therapeutic use , Sulfur/therapeutic use , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
3.
Bioorg Med Chem ; 58: 116577, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35189560

ABSTRACT

Chagas disease (CD) is a centenarian neglected parasitosis caused by the protozoan Trypanosoma cruzi (T. cruzi). Despite the continuous efforts of many organizations and institutions, CD is still an important human health problem worldwide. A lack of a safe and affordable treatment has led drug discovery programmes to focus, for years, on the search for molecules enabling interference with enzymes that are essential for T. cruzi survival. In this work, the authors want to offer a brief overview of the different validated targets that are involved in diverse parasite pathways: glycolysis, sterol synthesis, the de novo biosynthesis of pyrimidine nucleotides, the degradative processing of peptides and proteins, oxidative stress damage and purine salvage and nucleotide synthesis and metabolism. Their structural aspects, function, active sites, etc. were studied and considered with the aim of defining molecular bases in the search for new effective treatments for CD. This review also compiles, as much as possible, all the inhibitors reported to date against these T. cruzi targets, serving as a reference for future research in this field.


Subject(s)
Chagas Disease/drug therapy , Drug Discovery , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Chagas Disease/metabolism , Humans , Molecular Structure , Oxidative Stress/drug effects , Parasitic Sensitivity Tests , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
4.
Eur J Med Chem ; 223: 113646, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34182359

ABSTRACT

The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, the most important parasitic infection in Latin America. The only treatments currently available are nitro-derivative drugs that are characterised by high toxicity and limited efficacy. Therefore, there is an urgent need for more effective, less toxic therapeutic agents. We have previously identified the potential for Mannich base derivatives as novel inhibitors of this parasite. To further explore this family of compounds, we synthesised a panel of 69 new analogues, based on multi-parametric structure-activity relationships, which allowed optimization of both anti-parasitic activity, physicochemical parameters and ADME properties. Additionally, we optimized our in vitro screening approaches against all three developmental forms of the parasite, allowing us to discard the least effective and trypanostatic derivatives at an early stage. We ultimately identified derivative 3c, which demonstrated excellent trypanocidal properties, and a synergistic mode of action against trypomastigotes in combination with the reference drug benznidazole. Both its druggability and low-cost production make this derivative a promising candidate for the preclinical, in vivo assays of the Chagas disease drug-discovery pipeline.


Subject(s)
Benzimidazoles/chemistry , Drug Design , Imidazoles/chemistry , Mannich Bases/chemistry , Trypanocidal Agents/chemical synthesis , Cell Line , Cell Proliferation/drug effects , Chagas Disease/drug therapy , Humans , Life Cycle Stages/drug effects , Mannich Bases/pharmacology , Mannich Bases/therapeutic use , Structure-Activity Relationship , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/physiology
5.
Acta Trop ; 215: 105801, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33352169

ABSTRACT

Compounds 1 and 2 (selenocyanate and diselenide derivatives, respectively) were evaluated for their potential use in vivo against visceral leishmaniasis (VL). Both entities showed low cytoxicity in vitro in Vero and Caco-2 cell lines. However, the compounds were not suitable for their oral administration, since they exhibited poor values of intestinal permeability in vitro. Microsomal stability assays did not show any metabolite for compound 1 after 120 min, whereas 2 was highly metabolized by the enzyme CYP450. Thus, the in vivo efficacy of compound 1 was assessed in a murine model of L. infantum VL. The daily i.v. administration of 1 mg/kg of compound 1 during 5 consecutive days reduced parasite load in liver, spleen and bone marrow (99.2%, 91.7% and 61.4%, respectively) compared to non-treated mice. To the best of our knowledge, this is the first time that a selenium compound has been tested in vivo against VL. Thus, this work evidences the possible usefulness of selenocyanate derivatives for the treatment of this disease.


Subject(s)
Cyanates/therapeutic use , Leishmania infantum , Leishmaniasis, Visceral/drug therapy , Selenium Compounds/therapeutic use , Animals , Cells, Cultured , Female , Humans , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar
6.
Eur J Med Chem ; 206: 112692, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32818869

ABSTRACT

The haemoflagellate protozoan Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas disease (CD), a potentially life-threatening disease. Little by little, remarkable progress has been achieved against CD, although it is still not enough. In the absence of effective chemotherapy, many research groups, organizations and pharmaceutical companies have focused their efforts on the search for compounds that could become viable drugs against CD. Within the wide variety of reported derivatives, this review summarizes and provides a global vision of the situation of those compounds that include broadly studied heterocycles in their structures due to their applications in medicinal chemistry: imidazole and benzimidazole rings. Therefore, the intention of this work is to present a compilation, as much as possible, of all the reported information, regarding these imidazole and benzimidazole derivatives against T. cruzi, as a starting point for future researchers in this field.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Chagas Disease/drug therapy , Drug Discovery , Imidazoles/chemistry , Imidazoles/pharmacology , Animals , Benzimidazoles/therapeutic use , Humans , Imidazoles/therapeutic use
7.
Eur J Med Chem ; 206: 112673, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32810750

ABSTRACT

Chagas disease is one of the most prevalent tropical neglected diseases and causes high mortality and morbidity in endemic countries. Current treatments for this disease, nifurtimox and benznidazole, are ineffective in the chronic phase of the disease and produce severe adverse effects. Therefore, novel therapies are urgently required. The trace element selenium has an important role in human health, due to its antioxidant, antiinflammatory and pro-immune properties. Actually, its deficiency has been related to several diseases and supplementation with this element has been proven to be beneficial for multiple pathologies. Furthermore, the usefulness of organic-selenium compounds has been studied in many disorders, showing promising results. The aim of this review is to analyse the available literature regarding the role of selenium in Chagas disease in order to determine whether its use could be beneficial for the management of this pathology.


Subject(s)
Chagas Disease/drug therapy , Selenium/chemistry , Selenium/pharmacology , Animals , Chagas Disease/metabolism , Humans , Molecular Targeted Therapy , Selenium/metabolism , Selenium/therapeutic use
8.
Mol Cell ; 73(6): 1292-1305.e8, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30765193

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for resolving transcriptional heterogeneity. However, its application to studying cancerous tissues is currently hampered by the lack of coverage across key mutation hotspots in the vast majority of cells; this lack of coverage prevents the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a method for the high-sensitivity detection of multiple mutations within single cells from both genomic and coding DNA, in parallel with unbiased whole-transcriptome analysis. Applying TARGET-seq to 4,559 single cells, we demonstrate how this technique uniquely resolves transcriptional and genetic tumor heterogeneity in myeloproliferative neoplasms (MPN) stem and progenitor cells, providing insights into deregulated pathways of mutant and non-mutant cells. TARGET-seq is a powerful tool for resolving the molecular signatures of genetically distinct subclones of cancer cells.


Subject(s)
Biomarkers, Tumor/genetics , DNA Mutational Analysis/methods , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Leukemia/genetics , Mutation , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Jurkat Cells , K562 Cells , Reproducibility of Results , Schizosaccharomyces/genetics
9.
Int J Mol Sci ; 20(3)2019 Jan 26.
Article in English | MEDLINE | ID: mdl-30691132

ABSTRACT

The prognosis for patients with metastatic melanoma remains very poor. Constitutive signal transducer and activator of transcription 3 (STAT3) activation has been correlated to metastasis, poor patient survival, larger tumor size, and acquired resistance against vemurafenib (PLX-4032), suggesting its potential as a molecular target. We recently designed a series of isoseleno- and isothio-urea derivatives of several biologically active heterocyclic scaffolds. The cytotoxic effects of lead isoseleno- and isothio-urea derivatives (compounds 1 and 3) were studied in a panel of five melanoma cell lines, including B-RAFV600E-mutant and wild-type (WT) cells. Compound 1 (IC50 range 0.8⁻3.8 µM) showed lower IC50 values than compound 3 (IC50 range 8.1⁻38.7 µM) and the mutant B-RAF specific inhibitor PLX-4032 (IC50 ranging from 0.4 to >50 µM), especially at a short treatment time (24 h). These effects were long-lasting, since melanoma cells did not recover their proliferative potential after 14 days of treatment. In addition, we confirmed that compound 1 induced cell death by apoptosis using Live-and-Dead, Annexin V, and Caspase3/7 apoptosis assays. Furthermore, compound 1 reduced the protein levels of STAT3 and its phosphorylation, as well as decreased the expression of STAT3-regulated genes involved in metastasis and survival, such as survivin and c-myc. Compound 1 also upregulated the cell cycle inhibitor p21. Docking studies further revealed the favorable binding of compound 1 with the SH2 domain of STAT3, suggesting it acts through STAT3 inhibition. Taken together, our results suggest that compound 1 induces apoptosis by means of the inhibition of the STAT3 pathway, non-specifically targeting both B-RAF-mutant and WT melanoma cells, with much higher cytotoxicity than the current therapeutic drug PLX-4032.


Subject(s)
Cell Survival/drug effects , Multiple Myeloma/metabolism , Organoselenium Compounds/pharmacology , Quinoxalines/pharmacology , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Docking Simulation , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Mutation , Organoselenium Compounds/chemistry , Phosphorylation/drug effects , Protein Conformation , Proto-Oncogene Proteins B-raf/genetics , Quinoxalines/chemistry , STAT3 Transcription Factor/chemistry , Signal Transduction/drug effects
10.
Nature ; 554(7690): 106-111, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29298288

ABSTRACT

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Subject(s)
Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells/cytology , Multipotent Stem Cells/cytology , Animals , Antigens, CD34 , B-Lymphocytes/cytology , Blood Platelets/cytology , CD48 Antigen/deficiency , Cell Self Renewal , Erythroid Cells/cytology , Female , Hematopoietic Stem Cells/metabolism , Male , Megakaryocytes/cytology , Mice , Multipotent Stem Cells/metabolism , Myeloid Cells/cytology , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism , T-Lymphocytes/cytology
11.
Molecules ; 22(8)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28786948

ABSTRACT

The physicochemical properties of a compound play a crucial role in the cancer development process. In this context, polymorphism can become an important obstacle for the pharmaceutical industry because it frequently leads to the loss of therapeutic effectiveness of some drugs. Stability under manufacturing conditions is also critical to ensure no undesired degradations or transformations occur. In this study, the thermal behaviour of 40 derivatives of a series of sulphur and selenium heteroaryl compounds with potential antitumoural activity were studied. In addition, the most promising cytotoxic derivatives were analysed by a combination of differential scanning calorimetry, X-ray diffraction and thermogravimetric techniques in order to investigate their polymorphism and thermal stability. Moreover, stability under acid, alkaline and oxidative media was tested. Degradation under stress conditions as well as the presence of polymorphism was found for the compounds VA6E and VA7J, which might present a hurdle to carrying on with formulation. On the contrary, these obstacles were not found for derivative VA4J.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Selenium/chemistry , Selenium/pharmacology , Sulfur/chemistry , Sulfur/pharmacology , Calorimetry, Differential Scanning , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Drug Stability , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Sensitivity and Specificity , Stress, Physiological , Thermogravimetry , X-Ray Diffraction
12.
Expert Opin Ther Pat ; 27(5): 527-538, 2017 May.
Article in English | MEDLINE | ID: mdl-28366103

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is the fourth most common cancer worldwide. Targeted therapy drugs (TTDs) are a valid treatment, epithelial growth factor receptor (EGFR) inhibitors being one of the most commonly used for CRC patients. However, this treatment is only useful for patients with wild-type KRAS (wtKRAS) and is effective only on about 40 to 60% of this subset due to the high plasticity of ErbB network. Areas covered: The invention proposes the use of ErbB protein levels and ErbB receptor dimer formation as biomarkers for selecting, predicting and monitoring CRC patients showing sensitivity to the action of EGFR inhibitors to benefit from the combination therapy of EGFR and HER2 inhibitors. The in vitro data on Lim1215 cells suggest the over-activation of HER3 signaling pathway in response to the use of EGFR inhibitors on monotherapy; the use of HER2 or HER3 or MEK inhibitors in combination with EGFR inhibitors reversed this activation. Expert opinion: To assess the clinical applicability of this invention, further studies are needed since the conclusions are derived solely based on the data obtained from only one CRC cell line (Lim1215). Furthermore, other biofactors/mutations should be considered to assure the potential benefits of the combination therapies proposed.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Molecular Targeted Therapy , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colorectal Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Patents as Topic , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors
13.
Article in English | MEDLINE | ID: mdl-28320721

ABSTRACT

The in vitro leishmanicidal activities of a series of 48 recently synthesized selenium derivatives against Leishmania infantum and Leishmania braziliensis parasites were tested using promastigotes and intracellular amastigote forms. The cytotoxicity of the tested compounds for J774.2 macrophage cells was also measured in order to establish their selectivity. Six of the tested compounds (compounds 8, 10, 11, 15, 45, and 48) showed selectivity indexes higher than those of the reference drug, meglumine antimonate (Glucantime), for both Leishmania species; in the case of L. braziliensis, compound 20 was also remarkably selective. Moreover, data on infection rates and amastigote numbers per macrophage showed that compounds 8, 10, 11, 15, 45, and 48 were the most active against both Leishmania species studied. The observed changes in the excretion product profile of parasites treated with these six compounds were also consistent with substantial cytoplasmic alterations. On the other hand, the most active compounds were potent inhibitors of Fe superoxide dismutase (Fe-SOD) in the two parasite species considered, whereas their impact on human CuZn-SOD was low. The high activity, low toxicity, stability, low cost of the starting materials, and straightforward synthesis make these compounds appropriate molecules for the development of affordable antileishmanicidal agents.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania braziliensis/drug effects , Leishmania infantum/drug effects , Meglumine/pharmacology , Organometallic Compounds/pharmacology , Animals , Humans , Leishmania braziliensis/metabolism , Leishmania infantum/metabolism , Meglumine Antimoniate , Parasitic Sensitivity Tests , Selenium/metabolism , Superoxide Dismutase/metabolism
14.
Eur J Med Chem ; 123: 407-418, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27487570

ABSTRACT

In this work, 27 novel hybrid derivatives containing diverse substituents with chalcogen atoms (selenium or sulfur) and several active heterocyclic scaffolds have been synthesized. Compounds were tested against two human cancer cells lines (MCF7 and PC-3) and a normal human mammary epithelial cell line (184B5) in order to determine their activity and selectivity against malignant cells. Ten compounds showed GI50 values below 10 µM in at least one of the cancer cell lines and six of them exhibited a selectivity index higher than 9. In general, selenium-containing compounds were more active than their corresponding sulfur analogs but we found some thiocyanate derivatives with comparable or higher activity and selectivity. Among the different substituents, the seleno- and thio-cyanate groups showed the most promising results. On the basis of their potent activity and high selectivity index, compounds 7e and 8f (containing a thiocyanate and a selenocyanate group, respectively) were selected for further biological evaluation. Both the compounds induced caspase-dependent cell death and cell cycle arrest in G2/M phase. In addition, these compounds do not violate any of the Lipinski's Rule of Five and thus possess good potential to become drugs, compound 7e being particularly promising.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chalcogens/chemistry , Chalcogens/pharmacology , Heterocyclic Compounds/chemistry , Antineoplastic Agents/chemical synthesis , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcogens/chemical synthesis , Drug Screening Assays, Antitumor , Humans , Structure-Activity Relationship
15.
Antimicrob Agents Chemother ; 60(6): 3802-12, 2016 06.
Article in English | MEDLINE | ID: mdl-27067328

ABSTRACT

A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 µM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3'-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design.


Subject(s)
Antiprotozoal Agents/pharmacology , Cyanates/pharmacology , Enzyme Inhibitors/pharmacology , Leishmania infantum/drug effects , Organoselenium Compounds/pharmacology , Selenium Compounds/pharmacology , Thiophenes/pharmacology , Antiprotozoal Agents/chemical synthesis , Cell Line , Cyanates/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Gene Expression , Humans , Inhibitory Concentration 50 , Leishmania infantum/enzymology , Leishmania infantum/growth & development , Macrophages/drug effects , Macrophages/parasitology , Molecular Structure , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Organoselenium Compounds/chemical synthesis , Parasitic Sensitivity Tests , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Selenium Compounds/chemical synthesis , Structure-Activity Relationship , Thiophenes/chemical synthesis
16.
Eur J Med Chem ; 113: 134-44, 2016 May 04.
Article in English | MEDLINE | ID: mdl-26922233

ABSTRACT

A series of novel selenourea derivatives and corresponding thiourea analogs were synthesized and tested against a panel of six human cancer cell lines: melanoma (1205Lu), lung carcinoma (A549), prostatic carcinoma (DU145), colorectal carcinoma (HCT116), pancreatic epithelioid carcinoma (PANC-1) and pancreatic adenocarcinoma (BxPC3). In general, we found that the selenium-containing derivatives were more potent than their isosteric sulfur analogs. Four selenourea derivatives (1e, 1f, 1g and 1i) showed IC50 values below 10 µM in all of tested cell lines at 72 h. On the basis of its potent activity, compound 1g was selected for further biological evaluation in different colon cancer cell lines. Our results indicated that compound 1g induced apoptosis by caspase activation, along with inhibition of anti-apoptotic proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Organoselenium Compounds/pharmacology , Thiourea/pharmacology , Urea/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry , Tumor Cells, Cultured , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...