Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Genomics ; 35(10): 577-84, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18937914

ABSTRACT

Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches.


Subject(s)
Developmental Biology/methods , Systems Biology/methods , Animals , Computational Biology , Epigenesis, Genetic , Evolution, Molecular , Genomics , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
2.
Bioinform Biol Insights ; 2: 401-12, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-19812791

ABSTRACT

Understanding the gene networks that orchestrate the differentiation of retinal progenitors into photoreceptors in the developing retina is important not only due to its therapeutic applications in treating retinal degeneration but also because the developing retina provides an excellent model for studying CNS development. Although several studies have profiled changes in gene expression during normal retinal development, these studies offer at best only a starting point for functional studies focused on a smaller subset of genes. The large number of genes profiled at comparatively few time points makes it extremely difficult to reliably infer gene networks from a gene expression dataset. We describe a novel approach to identify and prioritize from multiple gene expression datasets, a small subset of the genes that are likely to be good candidates for further experimental investigation. We report progress on addressing this problem using a novel approach to querying multiple large-scale expression datasets using a 'seed network' consisting of a small set of genes that are implicated by published studies in rod photoreceptor differentiation. We use the seed network to identify and sort a list of genes whose expression levels are highly correlated with those of multiple seed network genes in at least two of the five gene expression datasets. The fact that several of the genes in this list have been demonstrated, through experimental studies reported in the literature, to be important in rod photoreceptor function provides support for the utility of this approach in prioritizing experimental targets for further experimental investigation. Based on Gene Ontology and KEGG pathway annotations for the list of genes obtained in the context of other information available in the literature, we identified seven genes or groups of genes for possible inclusion in the gene network involved in differentiation of retinal progenitor cells into rod photoreceptors. Our approach to querying multiple gene expression datasets using a seed network constructed from known interactions between specific genes of interest provides a promising strategy for focusing hypothesis-driven experiments using large-scale 'omics' data.

SELECTION OF CITATIONS
SEARCH DETAIL
...