Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 175: 116725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744219

ABSTRACT

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.


Subject(s)
Collagen Type I , Down-Regulation , Mesenchymal Stem Cells , Osteogenesis Imperfecta , Osteogenesis , Pyrazoles , Quinolines , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/drug therapy , Osteogenesis/drug effects , Osteogenesis/genetics , Animals , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Down-Regulation/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Female , Quinolines/pharmacology , Mice , Child , Pyrazoles/pharmacology , Male , Cell Differentiation/drug effects , Mutation , Disease Models, Animal , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Child, Preschool , Cells, Cultured , Transforming Growth Factor beta/metabolism , Unfolded Protein Response/drug effects , Signal Transduction/drug effects
2.
Int J Mol Sci ; 23(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35163787

ABSTRACT

The incidence of bone-related disorders is continuously growing as the aging of the population in developing countries continues to increase. Although therapeutic interventions for bone regeneration exist, their effectiveness is questioned, especially under certain circumstances, such as critical size defects. This gap of curative options has led to the search for new and more effective therapeutic approaches for bone regeneration; among them, the possibility of using extracellular vesicles (EVs) is gaining ground. EVs are secreted, biocompatible, nano-sized vesicles that play a pivotal role as messengers between donor and target cells, mediated by their specific cargo. Evidence shows that bone-relevant cells secrete osteoanabolic EVs, whose functionality can be further improved by several strategies. This, together with the low immunogenicity of EVs and their storage advantages, make them attractive candidates for clinical prospects in bone regeneration. However, before EVs reach clinical translation, a number of concerns should be addressed. Unraveling the EVs' mode of action in bone regeneration is one of them; the molecular mediators driving their osteoanabolic effects in acceptor cells are now beginning to be uncovered. Increasing the functional and bone targeting abilities of EVs are also matters of intense research. Here, we summarize the cell sources offering osteoanabolic EVs, and the current knowledge about the molecular cargos that mediate bone regeneration. Moreover, we discuss strategies under development to improve the osteoanabolic and bone-targeting potential of EVs.


Subject(s)
Bone Regeneration , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , MicroRNAs/genetics , Translational Research, Biomedical
3.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613624

ABSTRACT

Osteogenesis imperfecta is a rare genetic disorder characterized by bone fragility, due to alterations in the type I collagen molecule. It is a very heterogeneous disease, both genetically and phenotypically, with a high variability of clinical phenotypes, ranging from mild to severe forms, the most extreme cases being perinatal lethal. There is no curative treatment for OI, and so great efforts are being made in order to develop effective therapies. In these attempts, the in vivo preclinical studies are of paramount importance; therefore, serious analysis is required to choose the right murine OI model able to emulate as closely as possible the disease of the target OI population. In this review, we summarize the features of OI murine models that have been used for preclinical studies until today, together with recently developed new murine models. The bone parameters that are usually evaluated in order to determine the relevance of new developing therapies are exposed, and finally, current and innovative therapeutic strategies attempts considered in murine OI models, along with their mechanism of action, are reviewed. This review aims to summarize the in vivo studies developed in murine models available in the field of OI to date, in order to help the scientific community choose the most accurate OI murine model when developing new therapeutic strategies capable of improving the quality of life.


Subject(s)
Osteogenesis Imperfecta , Mice , Animals , Osteogenesis Imperfecta/genetics , Quality of Life , Collagen Type I/genetics , Bone and Bones , Disease Models, Animal
4.
Sci Data ; 8(1): 240, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526510

ABSTRACT

The development of new effective and safer therapies for osteoporosis, in addition to improved diagnostic and prevention strategies, represents a serious need in the scientific community. Micro-CT image-based analyses in association with biomechanical testing have become pivotal tools in identifying osteoporosis in animal models by assessment of bone microarchitecture and resistance, as well as bone strength. Here, we describe a dataset of micro-CT scans and reconstructions of 15 whole femurs and biomechanical tests on contralateral femurs from C57BL/6JOlaHsd ovariectomized (OVX), resembling human post-menopausal osteoporosis, and sham operated (sham) female mice. Data provided for each mouse include: the acquisition images (.tiff), the reconstructed images (.bmp) and an.xls file containing the maximum attenuations for each reconstructed image. Biomechanical data include an.xls file with the recorded load-displacement, a movie with the filmed test and an.xls file collecting all biomechanical results.


Subject(s)
Femur/diagnostic imaging , Osteoporosis , X-Ray Microtomography , Animals , Biomechanical Phenomena , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Osteoporosis/diagnostic imaging , Osteoporosis/physiopathology , Ovariectomy
5.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299344

ABSTRACT

Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.


Subject(s)
Bone Regeneration/physiology , Bone and Bones/physiology , Animals , Graft Rejection/physiopathology , Humans , Mesenchymal Stem Cells/physiology , Osteogenesis/physiology , Tissue Scaffolds/chemistry , Wound Healing/physiology
6.
Cells ; 9(12)2020 12 07.
Article in English | MEDLINE | ID: mdl-33297501

ABSTRACT

Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.


Subject(s)
Bone and Bones/metabolism , Extracellular Matrix/metabolism , Osteoclasts/metabolism , Signal Transduction , Animals , Bone Density , Bone Matrix/metabolism , Collagen/chemistry , Extracellular Matrix Proteins/metabolism , Fractures, Bone/metabolism , Homeostasis , Humans , Integrins/metabolism , Matrix Metalloproteinases/metabolism , Osteoblasts/metabolism , Osteogenesis Imperfecta/metabolism , Osteoporosis/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism
7.
Cells ; 9(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32466483

ABSTRACT

Lamin A/C, intermediate filament proteins from the nuclear lamina encoded by the LMNA gene, play a central role in mediating the mechanosignaling of cytoskeletal forces into nucleus. In fact, this mechanotransduction process is essential to ensure the proper functioning of other tasks also mediated by lamin A/C: the structural support of the nucleus and the regulation of gene expression. In this way, lamin A/C is fundamental for the migration and differentiation of mesenchymal stem cells (MSCs), the progenitors of osteoblasts, thus affecting bone homeostasis. Bone formation is a complex process regulated by chemical and mechanical cues, coming from the surrounding extracellular matrix. MSCs respond to signals modulating the expression levels of lamin A/C, and therefore, adapting their nuclear shape and stiffness. To promote cell migration, MSCs need soft nuclei with low lamin A content. Conversely, during osteogenic differentiation, lamin A/C levels are known to be increased. Several LMNA mutations present a negative impact in the migration and osteogenesis of MSCs, affecting bone tissue homeostasis and leading to pathological conditions. This review aims to describe these concepts by discussing the latest state-of-the-art in this exciting area, focusing on the relationship between lamin A/C in MSCs' function and bone tissue from both, health and pathological points of view.


Subject(s)
Bone and Bones/cytology , Cell Differentiation , Cell Movement , Lamin Type A/metabolism , Mesenchymal Stem Cells/cytology , Animals , Humans , Osteogenesis
8.
Int J Mol Sci ; 21(5)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121265

ABSTRACT

Osteoporosis, the most common chronic metabolic bone disease, is characterized by low bone mass and increased bone fragility. Nowadays more than 200 million individuals are suffering from osteoporosis and still the number of affected people is dramatically increasing due to an aging population and longer life, representing a major public health problem. Current osteoporosis treatments are mainly designed to decrease bone resorption, presenting serious adverse effects that limit their safety for long-term use. Numerous studies with mesenchymal stem cells (MSCs) have helped to increase the knowledge regarding the mechanisms that underlie the progression of osteoporosis. Emerging clinical and molecular evidence suggests that inflammation exerts a significant influence on bone turnover, thereby on osteoporosis. In this regard, MSCs have proven to possess broad immunoregulatory capabilities, modulating both adaptive and innate immunity. Here, we will discuss the role that MSCs play in the etiopathology of osteoporosis and their potential use for the treatment of this disease.


Subject(s)
Mesenchymal Stem Cell Transplantation , Osteoporosis/therapy , Biomarkers/metabolism , Bone Remodeling , Humans , Inflammation/pathology , Mesenchymal Stem Cells/cytology , Osteoporosis/pathology , Osteoporosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...