Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Allergy ; 52(6): 747-759, 2022 06.
Article in English | MEDLINE | ID: mdl-35332591

ABSTRACT

INTRODUCTION: There is a need for a fast, efficient and safe way to induce tolerance in patients with severe allergic rhinitis. Intralymphatic immune therapy has been shown to be effective. METHODS: Patients with severe birch and timothy allergy were randomized and received three doses of 0.1 ml of birch and 5-grass allergen extracts (10,000 SQ units/ml, ALK-Abelló), or birch and placebo or 5-grass and placebo by ultrasound-guided injections into inguinal lymph nodes at monthly intervals. Rhinoconjunctivitis total symptom score, medication score and rhinoconjunctivitis quality of life questionnaire were evaluated before treatment and after each birch and grass pollen season during three subsequent years. Circulating proportions of T helper subsets and allergen-induced cytokine and chemokine production were analysed by flow cytometry and Luminex. RESULTS: The three groups reported fewer symptoms, lower use of medication and improved quality of life during the birch and grass pollen seasons each year after treatment at an almost similar rate independently of treatment with one or two allergens. Mild local pain was the most common adverse event. IgE levels to birch decreased, whereas birch-induced IL-10 secretion increased in all three groups. IgG4 levels to birch and timothy and skin prick test reactivity remained mainly unchanged. Conjunctival challenge tests with timothy extract showed a higher threshold for allergen. In all three groups, regulatory T cell frequencies were increased 3 years after treatment. CONCLUSIONS: Intralymphatic immunotherapy with one or two allergens in patients with grass and birch pollen allergy was safe, effective and may be associated with bystander immune modulatory responses. CLINICAL TRIAL REGISTRATION: EudraCT (2013-004726-28).


Subject(s)
Allergens , Rhinitis, Allergic , Betula , Double-Blind Method , Humans , Immunologic Factors , Immunotherapy , Phleum , Poaceae/adverse effects , Pollen , Quality of Life , Rhinitis, Allergic/therapy , Treatment Outcome
2.
Environ Sci Technol ; 54(22): 14589-14597, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33108176

ABSTRACT

Temporal variability contributes to uncertainty in inventories of methane emissions from the natural gas supply chain. Extrapolation of instantaneous, "snapshot-in-time" measurements, for example, can miss temporal intermittency and confound bottom-up/top-down comparisons. Importantly, no continuous long-term datasets record emission variability from underground natural gas storage facilities despite substantial contributions to sector-wide emissions. We present 11 months of continuous observations on a section of a storage site using dual-frequency comb spectroscopy (DCS observing system) and aircraft measurements. We find high emission variability and a skewed distribution in which the 10% highest 3 h emission periods observed by the continuous DCS observing system comprise 41% of the total observed 3-hourly emissions. Monthly emission rates differ by >12×, and 3-hourly rates vary by 17× in 24 h. We find links to the operating phase of the facility-emission rates, including as a percentage of the total gas flow rate, are significantly higher during periods of injection compared to those of withdrawal. We find that if a high frequency of aircraft flights can occur, then the ground- and aircraft-based approaches show excellent agreement in emission distributions. A better understanding of emission variability at underground natural gas storage sites will improve inventories and models of methane emissions and clarify pathways toward mitigation.


Subject(s)
Air Pollutants , Natural Gas , Air Pollutants/analysis , Aircraft , Environmental Monitoring , Methane/analysis , Natural Gas/analysis
3.
Environ Sci Technol ; 53(5): 2908-2917, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30695644

ABSTRACT

A new method is tested in a single-blind study for detection, attribution, and quantification of methane emissions from the natural gas supply chain, which contribute substantially to annual U.S. emissions. The monitoring approach couples atmospheric methane concentration measurements from an open-path dual frequency comb laser spectrometer with meteorological data in an inversion to characterize emissions. During single-blind testing, the spectrometer is placed >1 km from decommissioned natural gas equipment configured with intentional leaks of controllable rate. Single, steady emissions ranging from 0 to 10.7 g min-1 (0-34.7 scfh) are detected, located, and quantified at three gas pads of varying size and complexity. The system detects 100% of leaks, including leaks as small as 0.96 g min-1 (3.1 scfh). It attributes leaks to the correct pad or equipment group (tank battery, separator battery, wellhead battery) 100% of the time and to the correct equipment (specific separator, tank, or wellhead) 67% of the time. All leaks are quantified to within 3.7 g min-1 (12 scfh); 94% are quantified to within 2.8 g min-1 (9 scfh). These tests are an important initial demonstration of the methodology's viability for continuous monitoring of large regions, with extension to other trace gases and industries.


Subject(s)
Air Pollutants , Natural Gas , Gases , Methane , Single-Blind Method
4.
Glob Chang Biol ; 22(10): 3427-43, 2016 10.
Article in English | MEDLINE | ID: mdl-27124119

ABSTRACT

Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub-Basin estimates have not been previously available.


Subject(s)
Climate Change , Ecosystem , Carbon Cycle , Carbon Dioxide , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...