Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Front Med (Lausanne) ; 11: 1397648, 2024.
Article in English | MEDLINE | ID: mdl-38841581

ABSTRACT

For cancer therapy, the focus is now on targeting the chemotherapy drugs to cancer cells without damaging other normal cells. The new materials based on bio-compatible magnetic carriers would be useful for targeted cancer therapy, however understanding their effectiveness should be done. This paper presents a comprehensive analysis of a dataset containing variables x(m), y(m), and U(m/s), where U represents velocity of blood through vessel containing ferrofluid. The effect of external magnetic field on the fluid flow is investigated using a hybrid modeling. The primary aim of this research endeavor was to construct precise and dependable predictive models for velocity, utilizing the provided input variables. Several base models, including K-nearest neighbors (KNN), decision tree (DT), and multilayer perceptron (MLP), were trained and evaluated. Additionally, an ensemble model called AdaBoost was implemented to further enhance the predictive performance. The hyper-parameter optimization technique, specifically the BAT optimization algorithm, was employed to fine-tune the models. The results obtained from the experiments demonstrated the effectiveness of the proposed approach. The combination of the AdaBoost algorithm and the decision tree model yielded a highly impressive score of 0.99783 in terms of R2, indicating a strong predictive performance. Additionally, the model exhibited a low error rate, as evidenced by the root mean square error (RMSE) of 5.2893 × 10-3. Similarly, the AdaBoost-KNN model exhibited a high score of 0.98524 using R2 metric, with an RMSE of 1.3291 × 10-2. Furthermore, the AdaBoost-MLP model obtained a satisfactory R2 score of 0.99603, accompanied by an RMSE of 7.1369 × 10-3.

2.
ACS Omega ; 9(17): 19536-19547, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708263

ABSTRACT

Pediatric pulmonary hypertension is a serious syndrome with significant morbidity and mortality. Sildenafil is widely used off-label in pediatric patients with pulmonary arterial hypertension. In this study, bile salt-stabilized nanovesicles (bilosomes) were screened for their efficacy to enhance the transdermal delivery of the phosphodiesterase type 5 inhibitor, sildenafil citrate, in an attempt to augment its therapeutic efficacy in pediatric pulmonary hypertension. A response surface methodology was implemented for fabricating and optimizing a bilosomal formulation of sildenafil (SDF-BS). The optimized SDF-BS formulation was characterized in terms of its entrapment efficiency (EE), zeta potential, vesicle size, and in vitro release profile. The optimized formula was then loaded onto hydroxypropyl methyl cellulose (HPMC) hydrogel and assessed for skin permeation, in vivo pharmacokinetics, and pharmacodynamic studies. The optimized SDF-BS showed the following characteristic features; EE of 88.7 ± 1.1%, vesicle size of 185.0 + 9.2 nm, zeta potential of -20.4 ± 1.1 mV, and efficiently sustained SDF release for 12 h. Skin permeation study revealed a remarkable improvement in SDF penetration from bilosomal gel compared to plain SDF gel. In addition, pharmacokinetic results revealed that encapsulating SDF within bilosomal vesicles significantly enhanced its systemic bioavailability (∼3 folds), compared to SDF oral suspension. In addition, pharmacodynamic investigation revealed that, compared to plain SDF gel or oral drug suspension, SDF-BS gel applied topically triggered a significant elevation (p < 0.05) in cGMP serum levels, underscoring the superior therapeutic efficacy of SDF-BS gel. Conclusively, bilosomes can be viewed as a promising nanocarrier for transdermal delivery of SDF that would grant higher therapeutic efficiency while alleviating the limitations encountered with SDF oral administration.

3.
Int J Pharm X ; 7: 100240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577618

ABSTRACT

Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 µg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 µg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.

4.
ACS Omega ; 9(14): 16346-16357, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617636

ABSTRACT

This research work aimed to develop and evaluate proniosomes for the oral delivery of the lipophilic drug Irbesartan (IRB) to improve its solubility and bioavailability. Proniosomes of Irbesartan were formulated using a lipid, surfactant, and carrier by a slurry method. Based on the prepared preliminary trial batches and their evaluation, the formulation was optimized by employing a Box-Behnken design (BBD) in which concentrations of span 60 (X1), cholesterol (X2), and mannitol (X3) were used as three independent variables and the vesicular size (VS) (Y1), % entrapment efficiency (% EE) (Y2), and % cumulative drug release (% CDR) (Y3) were used as dependent variables. The optimized batch B1 was obtained from the BBD experiment after validation of checkpoint analysis, and their characterization was done for VS, % EE, % CDR, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analysis. The optimized batch showed a VS of 199 ± 5.4 nm, a % EE of 99.25 ± 2.24%, and a % CDR of 97.36 ± 1.13% at 24 h. Scanning electron microscopy (SEM) study showed a smooth surface of batch B1. DSC and XRD studies indicated the amorphous nature of the proniosomal formulation. The proniosomal formulation showed increased solubility (2.65 ± 0.2 mg/mL) in phosphate buffer, pH 6.8, as compared to water (0.059 ± 0.02 mg/mL). The pharmacokinetic study in rats confirmed the increased bioavailability of the drug in optimized proniosomal formulation compared with its pure drug suspension. Cmax, Tmax, and AUC0-t of the drug also increased by 2-fold compared to those of drug suspension. Thus, in conclusion, the proniosomal formulation proved to be an efficient carrier for improved oral delivery of Irbesartan by improving the solubility and bioavailability of the drug.

5.
Saudi Pharm J ; 32(3): 101984, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38384476

ABSTRACT

Current research focuses on explicitly developing and evaluating nanostructured lipidic carriers (NLCs) for the chemotherapeutic drug Ribociclib (RCB) via the topical route to surmount the inherent bioavailability shortcomings. The absolute oral bioavailability has not been determined, but using a physiologically based pharmacokinetic model it was predicted that 65.8 % of the standard dose of RCB (600 mg) would be absorbed mainly in the small intestine. RCB-NLCs were produced using the solvent evaporation method, and Box-Behnken Design (BBD) was employed to optimize composition. The prepared NLCs had an average PS of 79.29 ± 3.53 nm, PDI of 0.242 ± 0.021, and a %EE of 86.07 ± 3.14. The TEM analysis disclosed the spherical form and non-aggregative nature of the NLCs. The outcomes of an in-vitro release investigation presented cumulative drug release of 84.97 ± 3.37 % in 24 h, significantly higher than that from the RCB suspension (RCB-SUS). Ex-vivo skin permeation investigations on rodent (Swiss albino mice) revealed that RCB-NLCs have 1.91 times increases in skin permeability comparable to RCB-SUS. Compared to RCB-SUS, RCB-NLCs were able to penetrate deeper into the epidermis membrane than RCB-SUS as per the findings of confocal microscopy. In dermatokinetic study, higher amount of RCB was maintained in both the layers of mice's skin when treated with RCB-NLCs gel comparable to the RCB-SUS gel preparation. The in-vitro, ex-vivo, CLSM, and dermatokinetics data demonstrated a significant possibility for this novel RCB formulation to be effective against skin cancer.

6.
ACS Omega ; 9(7): 8139-8150, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405505

ABSTRACT

Tenofovir (TNF) is a common component of many antiretroviral therapy regimens, but it is associated with poor membrane permeability and low oral bioavailability. To improve its oral bioavailability and membrane permeability, a self-emulsifying drug delivery system (SEDDS) was developed and characterized, and its relative bioavailability was compared to the marketed tablets (Tenof). Based on solubility and ternary phase diagram analysis, eucalyptus oil was selected as an oil phase, Kolliphor EL, and Kollisolv MCT 70 were chosen as surfactant and cosurfactant, respectively, while glycerol was used as cosolvent in surfactant mixture. Optimized SEDDS formulation F6 showed an oil droplet size of 98.82 nm and zeta potential of -13.03 mV, indicating the high stability of oil droplets. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy characterization studies were also carried out to assess the amorphous and morphological states of the drug in the prepared SEDDS formulation. The in vitro dissolution profile of SEDDS shows the rapid release of the drug. SEDDS F6 demonstrates a higher drug permeability than the plain TNF and TNF-marketed tablets (Tenof). A pharmacokinetic study in rats revealed that SEDDS F6 showed significantly higher Cmax and AUC0-t than the marketed tablets and pure drug suspension. In addition, the relative bioavailability of SEDDS formulation dramatically improved by 21.53-fold compared to marketed tablets and 66.27-fold compared to pure drugs. These findings show that SEDDS composed of eucalyptus oil, glycerol, Kolliphor EL, and Kollisolv MCT 70 could be a useful tool for enhancing physiochemical properties and oral TNF absorption. Therefore, SEDDS has shown promise in improving the oral bioavailability of poorly water-soluble drugs.

7.
Biomedicines ; 11(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38137562

ABSTRACT

This study aimed to prepare glycyrrhizin-apigenin spray-dried solid dispersions and develop PVA filament-based 3D printlets to enhance the dissolution and therapeutic effects of apigenin (APN); three formulations (APN1-APN3) were proportioned from 1:1 to 1:3. A physicochemical analysis was conducted, which revealed process yields of 80.5-91% and APN content within 98.0-102.0%. FTIR spectroscopy confirmed the structural preservation of APN, while Powder-XRD analysis and Differential Scanning Calorimetry indicated its transformation from a crystalline to an amorphous form. APN2 exhibited improved flow properties, a lower Angle of Repose, and Carr's Index, enhancing compressibility, with the Hausner Ratio confirming favorable flow properties for pharmaceutical applications. In vitro dissolution studies demonstrated superior performance with APN2, releasing up to 94.65% of the drug and revealing controlled release mechanisms with a lower mean dissolution time of 71.80 min and a higher dissolution efficiency of 19.2% compared to the marketed APN formulation. This signified enhanced dissolution and improved therapeutic onset. APN2 exhibited enhanced antioxidant activity; superior cytotoxicity against colon cancer cells (HCT-116), with a lower IC50 than APN pure; and increased antimicrobial activity. A stability study confirmed the consistency of APN2 after 90 days, as per ICH, with an f2 value of 70.59 for both test and reference formulations, ensuring reliable pharmaceutical development. This research underscores the potential of glycyrrhizin-apigenin solid dispersions for pharmaceutical and therapeutic applications, particularly highlighting the superior physicochemical properties, dissolution behavior, biological activities, and stability of APN2, while the development of a 3D printlet shell offers promise for enhanced drug delivery and therapeutic outcomes in colon cancer treatment, displaying advanced formulation and processing techniques.

8.
Polymers (Basel) ; 15(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960016

ABSTRACT

This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) and size. The optimized BMT-loaded niosomal formulation prepared at a cholesterol/span 60 ratio of 1:2 exhibited the highest entrapment (81.2 ± 1.2%) and a small particle size (167.3 ± 9.1 nm), and they were selected for incorporation into in situ gelling systems (BMT-ISGs) based on Pluronic F127/Pluronic F68. Finally, the in vivo efficiency of the BMT-ISG formulation, in terms of lowering the intraocular pressure (IOP) in normotensive male albino rabbits following ocular administration, was assessed and compared to that of BMT ophthalmic solution. All the formulated BMT-ISGs showed sol-gel transition temperatures ranging from 28.1 °C to 40.5 ± 1.6 °C. In addition, the BMT-ISG formulation sustained in vitro BMT release for up to 24 h. Interestingly, in vivo experiments depicted that topical ocular administration of optimized BMT-ISG formulation elicited a significant decline in IOP, with maximum mean decreases in IOP of 9.7 ± 0.6 mm Hg, compared to BMT aqueous solution (5.8 ± 0.6 mm Hg). Most importantly, no signs of irritation to the rabbit's eye were observed following topical ocular administration of the optimized BMT-ISG formulation. Collectively, our results suggested that niosomal in situ gels might be a feasible delivery vehicle for topical ocular administration of anti-glaucoma agents, particularly those with poor ocular bioavailability.

9.
Article in English | MEDLINE | ID: mdl-37910294

ABSTRACT

Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity. Therefore, the objective of the present review is to evaluate the findings of the reported studies exploring the antitumor effects of coelomic fluid in the context of its possible utilization as a natural therapeutic agent to cure different types of cancer. The possible mechanisms underlying the coelomic fluid's anticancerous potential as well as the possibility for future development of cutting-edge therapeutic agents utilizing coelomic fluid-derived natural bioactive compounds to treat cancer disorders have been discussed along with future challenges. In addition, the feasibility of encapsulation of bioactive compounds derived from coelomic fluid with nanomaterials that could be further explored to attain more effective anticancer competence is discussed.

10.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004415

ABSTRACT

In the current study, the toxic effects of gefitinib-loaded solid lipid nanoparticles (GFT-loaded SLNs) upon human breast cancer cell lines (MCF-7) were investigated. GFT-loaded SLNs were prepared through a single emulsification-evaporation technique using glyceryl tristearate (Dynasan™ 114) along with lipoid® 90H (lipid surfactant) and Kolliphore® 188 (water-soluble surfactant). Four formulae were developed by varying the weight of the lipoid™ 90H (100-250 mg), and the GFT-loaded SLN (F4) formulation was optimized in terms of particle size (472 ± 7.5 nm), PDI (0.249), ZP (-15.2 ± 2.3), and EE (83.18 ± 4.7%). The optimized formulation was further subjected for in vitro release, stability studies, and MTT assay against MCF-7 cell lines. GFT from SLNs exhibited sustained release of the drug for 48 h, and release kinetics followed the Korsmeyer-Peppas model, which indicates the mechanism of drug release by swelling and/or erosion from a lipid matrix. When pure GFT and GFT-SLNs were exposed to MCF-7 cells, the activities of p53 (3.4 and 3.7 times), caspase-3 (5.61 and 7.7 times), and caspase-9 (1.48 and 1.69 times) were enhanced, respectively, over those in control cells. The results suggest that GFT-loaded SLNs (F4) may represent a promising therapeutic alternative for breast cancer.

11.
Biomedicines ; 11(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37893109

ABSTRACT

Researchers are actively exploring potential bioactive compounds to enhance the effectiveness of Lisuride (Lis) in treating Parkinson's disease (PD) over the long term, aiming to mitigate the serious side effects associated with its extended use. A recent study found that combining the dietary flavonoid Tiliroside (Til) with Lis has potential anti-Parkinson's benefits. The study showed significant improvements in PD symptoms induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) when Til and Lis were given together, based on various behavioral tests. This combined treatment significantly improved motor function and protected dopaminergic neurons in rats with PD induced by MPTP. It also activated important molecular pathways related to cell survival and apoptosis control, as indicated by the increased pAkt/Akt ratio. Til and Lis together increased B-cell lymphoma 2 (Bcl-2), decreased caspase 3 activity, and prevented brain cell decay. Co-administration also reduced tumor necrosis factor alpha (TNF-α) and Interleukin-1 (IL-1). Antioxidant markers such as superoxide dismutase (SOD), catalase, and reduced glutathione significantly improved compared to the MPTP-induced control group. This study shows that using Til and Lis together effectively treats MPTP-induced PD in rats, yielding results comparable to an 8 mg/kg dose of levodopa, highlighting their potential as promising Parkinson's treatments.

12.
Gels ; 9(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37754422

ABSTRACT

The emergence of antibiotic-resistant strains of Pseudomonas aeruginosa (P. aeruginosa) presents a substantial obstacle in medical environments. To effectively tackle this problem, we suggest an innovative approach: employing a delivery system based on nanogels to administer lemongrass essential oil (LGO). Developed PVA and PLGA nanoparticle formulation efficiently encapsulates LGO with 56.23% encapsulation efficiency by solvent extraction technique, preserving stability and bioactivity. Nanogel: 116 nm size, low polydispersity (0.229), -9 mV zeta potential. The nanogel's controlled release facilitated targeted LGO delivery via pH-controlled dissolution. Pure LGO had the highest release rate, while LGO-NP and LGO-NP-CG exhibited slower rates. In 15 h, LGO-NP released 50.65%, and LGO-NP-CG released 63.58%, releasing 61.31% and 63.58% within 24 h. LGO-NP-CG demonstrated superior antioxidant activity, a lower MIC against P. aeruginosa, and the most potent bactericidal effect compared to other formulations. This underscores the versatile efficacy of LGO, suggesting its potential to combat antibiotic resistance and enhance treatment effectiveness. Moreover, employing a nanogel-based delivery approach for LGO offers an efficient solution to combat drug resistance in P. aeruginosa infections. By employing strategies such as nanogel encapsulation and controlled release, we can enhance the effectiveness of LGO against antibiotic-resistant strains. This study establishes a robust foundation for exploring innovative approaches to treating P. aeruginosa infections using nanomedicine and paves the way for investigating novel methods of delivering antimicrobial drugs. These efforts contribute to the ongoing battle against antibiotic resistance.

13.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631005

ABSTRACT

The objective of this study was to develop an innovative gallic-acid (GA) drug delivery system that could be administered transdermally, resulting in enhanced therapeutic benefits and minimal negative consequences. The method employed involved the preparation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with GA through nanoprecipitation-denoted GA@PLGANPs. The results reveal that this strategy led to perfectly spherical, homogeneous, and negatively charged particles, which are suitable for administration via skin patches or ointments. A further analysis indicates that these GA@PLGANPs exhibit remarkable antioxidant activity as well as potent antibacterial effects against a diverse range of microorganisms, making them ideal candidates for numerous applications. Additionally, it has been observed that these nanoparticles can effectively mitigate oxidative stress while also significantly inhibiting microbial growth by exerting detrimental effects on bacterial cell walls or membranes. In conclusion, on the basis of the findings presented in this study, there is strong evidence supporting the potential use of GA@PLGANPs as an effective therapy option with reduced side effects compared to conventional drug delivery methods.

14.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37631014

ABSTRACT

Breast cancer is a deadly disease that affects countless women worldwide. The most conventional treatments for breast cancer, such as the administration of anticancer medications such as letrozole (LTZ), pose significant barriers due to the non-selective delivery and low bioavailability of cytotoxic drugs leading to serious adverse effects and multidrug resistance (MDR). Addressing these obstacles requires an innovative approach, and we propose a combined strategy that synergistically incorporates LTZ with berberine (BBR) into stabilised AuNPs coated with ascorbic acid (AA), known as LTZ-BBR@AA-AuNPs. The LTZ-BBR@AA-AuNPs, a novel combined drug delivery system, were carefully designed to maximise the entrapment of both LTZ and BBR. The resulting spherical nanoparticles exhibited remarkable efficiency in trapping these two compounds, with rates of 58% and 54%, respectively. In particular, the average hydrodynamic diameter of these nanoparticles was determined to be 81.23 ± 4.0 nm with a PDI value of only 0.286, indicating excellent uniformity between them. Furthermore, their zeta potential was observed to be -14.5 mV, suggesting high stability even under physiological conditions. The release profiles showed that after being incubated for about 24 h at pH levels ranging from acidic (pH = 5) to basic (pH = 7), the percentage released for both drugs ranged from 56-72%. This sustained and controlled drug release can reduce any negative side effects while improving therapeutic efficacy when administered directly to cancer. MDA-MB-231 cells treated with LTZ-BBR@AA-AuNPs for 48 h exhibited IC50 values of 2.04 ± 0.011 µg/mL, indicating potent cytotoxicity against cells. Furthermore, the nanoparticles demonstrated excellent stability throughout the duration of the treatment.

15.
Saudi Pharm J ; 31(9): 101734, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37649675

ABSTRACT

Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 µg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 µg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.

16.
Pharmaceutics ; 15(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242700

ABSTRACT

Eluxadoline (ELD), a recently approved drug, exhibits potential therapeutic effects in the management and treatment of IBS-D. However, its applications have been limited due to poor aqueous solubility, leading to a low dissolution rate and oral bioavailability. The current study's goals are to prepare ELD-loaded eudragit (EG) nanoparticles (ENPs) and to investigate the anti-diarrheal activity on rats. The prepared ELD-loaded EG-NPs (ENP1-ENP14) were optimized with the help of Box-Behnken Design Expert software. The developed formulation (ENP2) was optimized based on the particle size (286 ± 3.67 nm), PDI (0.263 ± 0.01), and zeta potential (31.8 ± 3.18 mV). The optimized formulation (ENP2) exhibited a sustained release behavior with maximum drug release and followed the Higuchi model. The chronic restraint stress (CRS) was successfully used to develop the IBS-D rat model, which led to increased defecation frequency. The in vivo studies revealed a significant reduction in defecation frequency and disease activity index by ENP2 compared with pure ELD. Thus, the results demonstrated that the developed eudragit-based polymeric nanoparticles can act as a potential approach for the effective delivery of eluxadoline through oral administration for irritable bowel syndrome diarrhea treatment.

17.
Int J Nanomedicine ; 18: 2239-2251, 2023.
Article in English | MEDLINE | ID: mdl-37139486

ABSTRACT

Background: The aim of the present investigation is to prepare baricitinib (BAR)-loaded diphenyl carbonate (DPC) ß-cyclodextrin (ßCD) based nanosponges (NSs) to improve the oral bioavailability. Methods: BAR-loaded DPC-crosslinked ßCD NSs (B-DCNs) were prepared prepared by varying the molar ratio of ßCD: DPC (1:1.5 to 1:6). The developed B-DCNs loaded with BAR were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), % yield and percent entrapment efficiency (%EE). Results: Based on the above evaluations, BAR-loaded DPC ßCD NSs (B-CDN3) was optimized with mean size (345.8±4.7 nm), PDI (0.335±0.005), Yield (91.46±7.4%) and EE (79.1±1.6%). The optimized NSs (B-CDN3) was further confirmed by SEM, spectral analysis, BET analysis, in vitro release and pharmacokinetic studies. The optimized NSs (B-CDN3) showed 2.13 times enhancement in bioavailability in comparison to pure BAR suspension. Conclusion: It could be anticipated that NSs loaded with BAR as a promising tool for release and bioavailability for the treatment of rheumatic arthritis and Covid-19.


Subject(s)
COVID-19 , Cyclodextrins , Humans , COVID-19 Drug Treatment
18.
Biomimetics (Basel) ; 8(2)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37092424

ABSTRACT

Gelatin (bovine/porcine)-based edible films are considered as an excellent carrier for essential oils (EOs) to preserve food quality and extend their shelf life. Spearmint essential oil (SEO) is known for its potential antioxidant and antimicrobial effects; nevertheless, its food applications are limited due to the volatile nature of its active components. Thus, edible films loaded with essential oil can be an alternative to synthetic preservatives to improve their food applications. In the present study, the effect of SEO addition was investigated on the physicochemical properties of bovine and porcine gelatin films, and antioxidant activity was assessed. GCMS (Gas chromatography mass spectrometry) analysis revealed the presence of carvone (55%) and limonene (25.3%) as major components. The incorporation of SEO into the films decreased the opacity, moisture content, water solubility, and elongation at break of bovine and porcine gelatin films. However, with the addition of EO, the thickness and water vapor permeability of bovine and porcine-based gelatin films increased. Moreover, the addition of SEO increased the tensile strength (TS) of the porcine-based film, whereas bovine samples demonstrated a decrease in tensile strength. XRD (X-ray diffraction) findings revealed a decrease in the percentage crystallinity of both types of gelatin films. SEM (scanning electron microscope) results showed the changes in the morphology of films after the addition of SEO. Antioxidant properties significantly increased with the incorporation of EO (p < 0.05) when compared with control films. Therefore, the addition of SEO to gelatin-based edible films could be an effective approach to prepare an active food packaging material to prevent food oxidation.

19.
Polymers (Basel) ; 15(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37111972

ABSTRACT

This study aimed to develop three-dimensional (3D) baricitinib (BAB) pills using polylactic acid (PLA) by fused deposition modeling. Two strengths of BAB (2 and 4% w/v) were dissolved into the (1:1) PEG-400 individually, diluting it with a solvent blend of acetone and ethanol (27.8:18:2) followed by soaking the unprocessed 200 cm~6157.94 mg PLA filament in the solvent blend acetone-ethanol. FTIR spectrums of the 3DP1 and 3DP2 filaments calculated and recognized drug encapsulation in PLA. Herein, 3D-printed pills showed the amorphousness of infused BAB in the filament, as indicated by DSC thermograms. Fabricated pills shaped like doughnuts increased the surface area and drug diffusion. The releases from 3DP1 and 3DP2 were found to be 43.76 ± 3.34% and 59.14 ± 4.54% for 24 h. The improved dissolution in 3DP2 could be due to the higher loading of BAB due to higher concentration. Both pills followed Korsmeyer-Peppas' order of drug release. BAB is a novel JAK inhibitor that U.S. FDA has recently approved to treat alopecia areata (AA). Therefore, the proposed 3D printed tablets can be easily fabricated with FDM technology and effectively used in various acute and chronic conditions as personalized medicine at an economical cost.

20.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986762

ABSTRACT

This study aimed to develop a microemulsion formulation for topical delivery of Diacetyl Boldine (DAB) and to evaluate its cytotoxicity against melanoma cell line (B16BL6) in vitro. Using a pseudo-ternary phase diagram, the optimal microemulsion formulation region was identified, and its particle size, viscosity, pH, and in vitro release characteristics were determined. Permeation studies were performed on excised human skin using Franz diffusion cell assembly. The cytotoxicity of the formulations on B16BL6 melanoma cell lines was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Two formulation compositions were selected based on the higher microemulsion area of the pseudo-ternary phase diagrams. The formulations showed a mean globule size of around 50 nm and a polydispersity index of <0.2. The ex vivo skin permeation study demonstrated that the microemulsion formulation exhibited significantly higher skin retention levels than the DAB solution in MCT oil (Control, DAB-MCT). Furthermore, the formulations showed substantially higher cytotoxicity toward B16BL6 cell lines than the control formulation (p < 0.001). The half-maximal inhibitory concentrations (IC50) of F1, F2, and DAB-MCT formulations against B16BL6 cells were calculated to be 1 µg/mL, 10 µg/mL, and 50 µg/mL, respectively. By comparison, the IC50 of F1 was 50-fold lower than that of the DAB-MCT formulation. The results of the present study suggest that microemulsion could be a promising formulation for the topical administration of DAB.

SELECTION OF CITATIONS
SEARCH DETAIL
...