Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
2.
Nat Commun ; 7: 11889, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27297662

ABSTRACT

NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas.


Subject(s)
Homeodomain Proteins/genetics , Lymphocytes/metabolism , Lymphoma, B-Cell, Marginal Zone/genetics , Receptors, Antigen, B-Cell/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Gene Expression Profiling , Homeodomain Proteins/metabolism , Humans , Kaplan-Meier Estimate , Lymphoid Tissue/metabolism , Lymphoma, B-Cell, Marginal Zone/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Receptors, Antigen, B-Cell/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , Transcription Factors/metabolism
4.
PLoS One ; 8(10): e77098, 2013.
Article in English | MEDLINE | ID: mdl-24155920

ABSTRACT

Glioblastoma multiforme (GBM)-initiating cells (GICs) represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Differentiation/genetics , Glioblastoma/genetics , Glioblastoma/pathology , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Animals , Apoptosis/genetics , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers, Tumor/metabolism , Brain Neoplasms/surgery , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glial Fibrillary Acidic Protein/metabolism , Glioblastoma/surgery , Humans , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplastic Stem Cells/pathology , Nestin/metabolism , Neurons/metabolism , Neurons/pathology , Oligonucleotide Array Sequence Analysis , Phosphoproteins/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tubulin/metabolism
5.
Stem Cells ; 31(6): 1075-85, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23401361

ABSTRACT

Glioblastoma (GBM) is associated with infiltration of peritumoral (PT) parenchyma by isolated tumor cells that leads to tumor regrowth. Recently, GBM stem-like or initiating cells (GICs) have been identified in the PT area, but whether these GICs have enhanced migratory and invasive capabilities compared with GICs from the tumor mass (TM) is presently unknown. We isolated GICs from the infiltrated PT tissue and the TM of three patients and found that PT cells have an advantage over TM cells in two-dimensional and three-dimensional migration and invasion assays. Interestingly, PT cells display a high plasticity in protrusion formation and cell shape and their migration is insensitive to substrate stiffness, which represent advantages to infiltrate microenvironments of different rigidity. Furthermore, mouse and chicken embryo xenografts revealed that only PT cells showed a dispersed distribution pattern, closely associated to blood vessels. Consistent with cellular plasticity, simultaneous Rac and RhoA activation are required for the enhanced invasive capacity of PT cells. Moreover, Rho GTPase signaling modulators αVß3 and p27 play key roles in GIC invasiveness. Of note, p27 is upregulated in TM cells and inhibits RhoA activity. Gene silencing of p27 increased the invasive capacity of TM GICs. Additionally, ß3 integrin is upregulated in PT cells. Blockade of dimeric integrin αVß3, a Rac activator, reduced the invasive capacity of PT GICs in vitro and abrogated the spreading of PT cells into chicken embryos. Thus, our results describe the invasive features acquired by a unique subpopulation of GICs that infiltrate neighboring tissue.


Subject(s)
Brain Neoplasms/pathology , Cell Movement/physiology , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Chick Embryo , Down-Regulation , Female , Glioblastoma/genetics , Glioblastoma/metabolism , Heterografts , Humans , Integrin alphaVbeta3/genetics , Integrin alphaVbeta3/metabolism , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Signal Transduction , Tumor Cells, Cultured , Up-Regulation , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...