Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cir Esp (Engl Ed) ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762218

ABSTRACT

INTRODUCTION: Virtual reality (VR) provides a firsthand active learning experience through varying degrees of immersion. The aim of this study is to evaluate the use of VR as a potential tool for training operating room nurses to perform thoracic surgery procedures. METHODS: This is an open parallel-group randomized clinical trial. One group received basic formation followed by an assessment module. The experimental group received the same basic formation, followed by thoracic surgery training and an assessment module. RESULTS: Fifty-six nurses participated in the study (51 females), with a mean age of 41.6 years. Participants achieved a median evaluation mode score of 480 points (IQR = 32 points). The experimental group (520 points) achieved an overall higher score than the control group (440 points; P = .04). Regarding age, women in the second quartile of age among the participants (35-41 years) achieved significantly better results than the rest (P = .04). When we evaluated the results based on the moment of practice, exercises performed in the last 10 min obtained better results than those performed in the first 10 min (1064 points versus 554 points; P < .001). Regarding adverse effects blurred vision was the most frequent. The overall satisfaction rating with the experience was 8.5 out of 10. CONCLUSION: Virtual reality is a useful tool for training operating room nurses. Clinical trial with ISRCTN16864726 registered number.

2.
ACS Biomater Sci Eng ; 9(11): 6333-6344, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37725561

ABSTRACT

Primary open-angle glaucoma is characterized by the progressive degeneration of the optic nerve, with the high intraocular pressure (IOP) being one of the main risk factors. The human trabecular meshwork (HTM), specifically the juxtacanalicular tissue (JCT), is responsible for placing resistance to the aqueous humor (AH) outflow and the resulting IOP control. Currently, the lack of a proper in vitro JCT model and the complexity of three-dimensional models impede advances in understanding the relationship between AH outflow and HTM degeneration. Therefore, we design an in vitro JCT model using a polycaprolactone (PCL) nanofibrous scaffold, which supports cells to recapitulate the functional JCT morphology and allow the study of outflow physiology. Mechanical and morphological characterizations of the electrospun membranes were performed, and human trabecular meshwork cells were seeded over the scaffolds. The engineered JCT was characterized by scanning electron microscopy, quantitative real-time polymerase chain reaction, and immunochemistry assays staining HTM cell markers and proteins. A pressure-sensitive perfusion system was constructed and used for the investigation of the outflow facility of the polymeric scaffold treated with dexamethasone (a glucocorticoid) and netarsudil (a novel IOP lowering the rho inhibitor). Cells in the in vitro model exhibited an HTM-like morphology, expression of myocilin, fibronectin, and collagen IV, genetic expression, outflow characteristics, and drug responsiveness. Altogether, the present work develops an in vitro JCT model to better understand HTM cell biology and the relationship between the AH outflow and the HTM and allow further drug screening of pharmacological agents that affect the trabecular outflow facility.


Subject(s)
Glaucoma, Open-Angle , Nanofibers , Humans , Trabecular Meshwork/metabolism , Aqueous Humor/metabolism , Glaucoma, Open-Angle/metabolism , Tissue Engineering
3.
Cartilage ; 13(4): 105-118, 2022 12.
Article in English | MEDLINE | ID: mdl-36250422

ABSTRACT

OBJECTIVE: The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN: Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS: Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS: In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.


Subject(s)
Cartilage , Chondrocytes , Rabbits , Animals , Chondrocytes/metabolism , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Chondrogenesis
4.
Biomacromolecules ; 23(11): 4629-4644, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36288499

ABSTRACT

The co-administration of glial cell line-derived neurotrophic factor (GDNF) and mesenchymal stem cells (MSCs) in hydrogels (HGs) has emerged as a powerful strategy to enhance the efficient integration of transplanted cells in Parkinson's disease (PD). This strategy could be improved by controlling the cellular microenvironment and biomolecule release and better mimicking the complex properties of the brain tissue. Here, we develop and characterize a drug delivery system for brain repair where MSCs and GDNF are included in a nanoparticle-modified supramolecular guest-host HA HG. In this system, the nanoparticles act as both carriers for the GDNF and active physical crosslinkers of the HG. The multifunctional HG is mechanically compatible with brain tissue and easily injectable. It also protects GDNF from degradation and achieves its controlled release over time. The cytocompatibility studies show that the developed biomaterial provides a friendly environment for MSCs and presents good compatibility with PC12 cells. Finally, using RNA-sequencing (RNA-seq), we investigated how the three-dimensional (3D) environment, provided by the nanostructured HG, impacted the encapsulated cells. The transcriptome analysis supports the beneficial effect of including MSCs in the nanoreinforced HG. An enhancement in the anti-inflammatory effect of MSCs was observed, as well as a differentiation of the MSCs toward a neuron-like cell type. In summary, the suitable strength, excellent self-healing properties, good biocompatibility, and ability to boost MSC regenerative potential make this nanoreinforced HG a good candidate for drug and cell administration to the brain.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Rats , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Tissue Engineering/methods , Hydrogels/pharmacology , Hydrogels/metabolism , Mesenchymal Stem Cell Transplantation/methods , Brain/metabolism
5.
Biotechnol Bioeng ; 119(10): 2698-2714, 2022 10.
Article in English | MEDLINE | ID: mdl-35836364

ABSTRACT

Glaucoma is the leading cause of irreversible blindness worldwide and is characterized by the progressive degeneration of the optic nerve. Intraocular pressure (IOP), which is considered to be the main risk factor for glaucoma development, builds up in response to the resistance (resistance to what?) provided by the trabecular meshwork (TM) to aqueous humor (AH) outflow. Although the TM and its relationship to AH outflow have remained at the forefront of scientific interest, researchers remain uncertain regarding which mechanisms drive the deterioration of the TM. Current tissue-engineering fabrication techniques have come up with promising approaches to successfully recreate the TM. Nonetheless, more accurate models are needed to understand the factors that make glaucoma arise. In this review, we provide a chronological evaluation of the technological milestones that have taken place in the field of glaucoma research, and we conduct a comprehensive comparison of available TM fabrication technologies. Additionally, we also discuss AH perfusion platforms, since they are essential for the validation of these scaffolds, as well as pressure-outflow relationship studies and the discovery of new IOP-reduction therapies.


Subject(s)
Glaucoma , Trabecular Meshwork , Aqueous Humor , Humans , Intraocular Pressure , Trabecular Meshwork/physiology
6.
Elife ; 112022 05 23.
Article in English | MEDLINE | ID: mdl-35604384

ABSTRACT

Over the last few years, there has been growing interest in measuring the contractile force (CF) of engineered muscle tissues to evaluate their functionality. However, there are still no standards available for selecting the most suitable experimental platform, measuring system, culture protocol, or stimulation patterns. Consequently, the high variability of published data hinders any comparison between different studies. We have identified that cantilever deflection, post deflection, and force transducers are the most commonly used configurations for CF assessment in 2D and 3D models. Additionally, we have discussed the most relevant emerging technologies that would greatly complement CF evaluation with intracellular and localized analysis. This review provides a comprehensive analysis of the most significant advances in CF evaluation and its critical parameters. In order to compare contractile performance across experimental platforms, we have used the specific force (sF, kN/m2), CF normalized to the calculated cross-sectional area (CSA). However, this parameter presents a high variability throughout the different studies, which indicates the need to identify additional parameters and complementary analysis suitable for proper comparison. We propose that future contractility studies in skeletal muscle constructs report detailed information about construct size, contractile area, maturity level, sarcomere length, and, ideally, the tetanus-to-twitch ratio. These studies will hopefully shed light on the relative impact of these variables on muscle force performance of engineered muscle constructs. Prospective advances in muscle tissue engineering, particularly in muscle disease models, will require a joint effort to develop standardized methodologies for assessing CF of engineered muscle tissues.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Prospective Studies , Sarcomeres , Tissue Engineering/methods
7.
Polymers (Basel) ; 14(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35406188

ABSTRACT

The electrospinning of hybrid polymers is a versatile fabrication technique which takes advantage of the biological properties of natural polymers and the mechanical properties of synthetic polymers. However, the literature is scarce when it comes to comparisons of blends regarding coatings and the improvements offered thereby in terms of cellular performance. To address this, in the present study, nanofibrous electrospun scaffolds of polycaprolactone (PCL), their coating and their blend with gelatin were compared. The morphology of nanofibrous scaffolds was analyzed under field emission scanning electron microscopy (FE-SEM), indicating the influence of the presence of gelatin. The scaffolds were mechanically tested with tensile tests; PCL and PCL gelatin coated scaffolds showed higher elastic moduli than PCL/gelatin meshes. Viability of mouse embryonic fibroblasts (MEF) was evaluated by MTT assay, and cell proliferation on the scaffold was confirmed by fluorescence staining. The positive results of the MTT assay and cell growth indicated that the scaffolds of PCL/gelatin excelled in comparison to other scaffolds, and may serve as good candidates for tissue engineering applications.

8.
Sci Rep ; 12(1): 3898, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273231

ABSTRACT

Mechanical characterization supposes a key step in the development of cultured meat to help mimicking the sensorial properties of already existing commercial products based on traditional meat. This work presents two well stablished methods that can help studying cultured meat mechanical characteristics: texture profile analysis (double compression test) and rheology. These techniques provide data about the elastic and viscous behaviour of the samples but also values about other texture characteristics such as springiness, cohesiveness, chewiness and resilience. In this work, we present a comparison of cultured meat-based samples with commercial of the shelf common meat products (sausage, turkey and chicken breast). Results show that both Young's and Shear modulus in the cultured meat samples can be compared to commercial products in order to understand its properties. The texture characteristics for the cultured meat studied, show values within the range of commercial products. These results demonstrate the applicability of this methodology for the adjustment of mechanical properties of cultured meat products.


Subject(s)
Cooking , Meat Products , Animals , Chickens , Meat/analysis , Meat Products/analysis , Rheology
9.
Sci Data ; 8(1): 240, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526510

ABSTRACT

The development of new effective and safer therapies for osteoporosis, in addition to improved diagnostic and prevention strategies, represents a serious need in the scientific community. Micro-CT image-based analyses in association with biomechanical testing have become pivotal tools in identifying osteoporosis in animal models by assessment of bone microarchitecture and resistance, as well as bone strength. Here, we describe a dataset of micro-CT scans and reconstructions of 15 whole femurs and biomechanical tests on contralateral femurs from C57BL/6JOlaHsd ovariectomized (OVX), resembling human post-menopausal osteoporosis, and sham operated (sham) female mice. Data provided for each mouse include: the acquisition images (.tiff), the reconstructed images (.bmp) and an.xls file containing the maximum attenuations for each reconstructed image. Biomechanical data include an.xls file with the recorded load-displacement, a movie with the filmed test and an.xls file collecting all biomechanical results.


Subject(s)
Femur/diagnostic imaging , Osteoporosis , X-Ray Microtomography , Animals , Biomechanical Phenomena , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Osteoporosis/diagnostic imaging , Osteoporosis/physiopathology , Ovariectomy
10.
J Bone Miner Res ; 36(11): 2203-2213, 2021 11.
Article in English | MEDLINE | ID: mdl-34173256

ABSTRACT

The remodeling of the extracellular matrix is a central function in endochondral ossification and bone homeostasis. During secondary fracture healing, vascular invasion and bone growth requires the removal of the cartilage intermediate and the coordinate action of the collagenase matrix metalloproteinase (MMP)-13, produced by hypertrophic chondrocytes, and the gelatinase MMP-9, produced by cells of hematopoietic lineage. Interfering with these MMP activities results in impaired fracture healing characterized by cartilage accumulation and delayed vascularization. MMP-10, Stromelysin 2, a matrix metalloproteinase with high homology to MMP-3 (Stromelysin 1), presents a wide range of putative substrates identified in vitro, but its targets and functions in vivo and especially during fracture healing and bone homeostasis are not well defined. Here, we investigated the role of MMP-10 through bone regeneration in C57BL/6 mice. During secondary fracture healing, MMP-10 is expressed by hematopoietic cells and its maximum expression peak is associated with cartilage resorption at 14 days post fracture (dpf). In accordance with this expression pattern, when Mmp10 is globally silenced, we observed an impaired fracture-healing phenotype at 14 dpf, characterized by delayed cartilage resorption and TRAP-positive cell accumulation. This phenotype can be rescued by a non-competitive transplant of wild-type bone marrow, indicating that MMP-10 functions are required only in cells of hematopoietic linage. In addition, we found that this phenotype is a consequence of reduced gelatinase activity and the lack of proMMP-9 processing in macrophages. Our data provide evidence of the in vivo function of MMP-10 during endochondral ossification and defines the macrophages as the lead cell population in cartilage removal and vascular invasion. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Fracture Healing , Matrix Metalloproteinase 10 , Animals , Cartilage , Chondrocytes , Fracture Healing/genetics , Matrix Metalloproteinase 10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteogenesis
11.
Tissue Eng Regen Med ; 18(3): 343-353, 2021 06.
Article in English | MEDLINE | ID: mdl-33864626

ABSTRACT

BACKGROUND: In recent years, three-dimensional (3D)-printing of tissue-engineered cartilaginous scaffolds is intended to close the surgical gap and provide bio-printed tissue designed to fit the specific geometric and functional requirements of each cartilage defect, avoiding donor site morbidity and offering a personalizing therapy. METHODS: To investigate the role of 3D-bioprinting scaffolding for nasal cartilage defects repair a systematic review of the electronic databases for 3D-Bioprinting articles pertaining to nasal cartilage bio-modelling was performed. The primary focus was to investigate cellular source, type of scaffold utilization, biochemical evaluation, histological analysis, in-vitro study, in-vivo study, animal model used, length of research, and placement of experimental construct and translational investigation. RESULTS: From 1011 publications, 16 studies were kept for analysis. About cellular sources described, most studies used primary chondrocyte cultures. The cartilage used for cell isolation was mostly nasal septum. The most common biomaterial used for scaffold creation was polycaprolactone alone or in combination. About mechanical evaluation, we found a high heterogeneity, making it difficult to extract any solid conclusion. Regarding biological and histological characteristics of each scaffold, we found that the expression of collagen type I, collagen Type II and other ECM components were the most common patterns evaluated through immunohistochemistry on in-vitro and in-vivo studies. Only two studies made an orthotopic placement of the scaffolds. However, in none of the studies analyzed, the scaffold was placed in a subperichondrial pocket to rigorously simulate the cartilage environment. In contrast, scaffolds were implanted in a subcutaneous plane in almost all of the studies included. CONCLUSION: The role of 3D-bioprinting scaffolding for nasal cartilage defects repair is growing field. Despite the amount of information collected in the last years and the first surgical applications described recently in humans. Further investigations are needed due to the heterogeneity on mechanical evaluation parameters, the high level of heterotopic scaffold implantation and the need for quantitative histological data.


Subject(s)
Bioprinting , Animals , Chondrocytes , Humans , Nasal Cartilages/surgery , Printing, Three-Dimensional , Tissue Scaffolds
12.
Philos Trans A Math Phys Eng Sci ; 373(2038)2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25713450

ABSTRACT

An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...