Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 314: 137709, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592833

ABSTRACT

Biogas consisting of carbon dioxide/methane (CO2/CH4) gas mixtures has emerged as an alternative renewable fuel to natural gas. The presence of CO2 can decrease the calorific value and generate greenhouse gas. Hence, separating CO2 from CH4 is a vital step in enhancing the use of biogas. Zeolite and zeolite-based mixed matrix membrane (MMM) is considered an auspicious candidate for CO2/CH4 separation due to thermal and chemical stability. This review initially addresses the development of zeolite and zeolite-based MMM for the CO2/CH4 separation. The highest performance in terms of CO2 permeance and CO2/CH4 selectivity was achieved using zeolite and zeolite-based MMM, which exhibited CO2 permeance in the range of 2.0 × 10- 7-7.0 × 10- 6 mol m- 2 s- 1 Pa- 1 with CO2/CH4 selectivity ranging from 3 to 300. Current trends directed toward improving CO2/CH4 selectivity via modification methods including post-treatment, ion-exchanged, amino silane-grafted, and ionic liquid encapsulated of zeolite-based MMM. Those modification methods improved the defect-free and interfacial adhesions between zeolite particulates and polymer matrices and subsequently enhanced the CO2/CH4 selectivity. The modifications via ionic liquid and silane methods more influenced the CO2/CH4 selectivity with 90 and 660, respectively. This review also focuses on the possible applications of zeolite-based MMM, which include the purification and treatment of water as well as biomedical applications. Lastly, future advances and opportunities for gas separation applications are also briefly discussed. This review aims to share knowledge regarding zeolite-based MMM and inspire new industrial applications.


Subject(s)
Ionic Liquids , Zeolites , Biofuels , Carbon Dioxide , Dust , Silanes
2.
Chemosphere ; 304: 135349, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35714961

ABSTRACT

Heterogeneous advanced oxidation processes are a promising approach for cost-efficient removal of pollutants using semiconductors. Zirconium dioxide (ZrO2) is an auspicious material for photocatalytic activity owning to its suitable bandgap, stability, and low cost. However, ZrO2 suffers from fast recombination rate, and poor light harvesting ability. Nonetheless, extra modification has also shown improvements and therefore is worth investigating. The endeavour of this paper initially discusses the fundamentals with respect to reactive species, classification, and synthesis methods for ZrO2. Furthermore, with particular consideration to stability and reusability, several additional modification approaches for ZrO2-based photocatalysts such as doping and noble metals loading. Furthermore, the formation of heterojunctions has also been shown to boost photocatalytic activity while inhibiting charge carrier recombination. Finally, photocatalyst separation via magnetic-based photocatalysts are elucidated. As a result, ZrO2-based photocatalysts are regarded as a promising emerging technology that warrants further development and research.


Subject(s)
Environmental Pollutants , Catalysis , Oxidation-Reduction , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...