Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 120: 110360, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33730562

ABSTRACT

Interest in joint and segment contributions to pitched ball velocity has been dominated by inverse dynamic solutions, which is limited in ascertaining complex muscle/joint interactions. Our purpose was to use induced velocity analysis to investigate which joint(s) made the largest contribution to the velocity of a pitched ball. Pitching data were collected from six elite high school-aged pitchers with no history of arm injury. Participants threw a fastball pitch from the windup on flat ground. Data were collected using seven Vicon 612 cameras (250 Hz) and three AMTI force platforms (1000 Hz). A 14-segment biomechanical model (feet, legs, thighs, pelvis, a combined thorax-abdomen-head, i.e., trunk, upper arms, forearms, and hands) was implemented in Visual3D as a dynamic link library built using SD/Fast (PTC) software. Model-generated induced velocity of the ball was validated against ball velocity obtained from a calibrated radar gun. Velocity induced torques at the shoulder just prior to release, and elbow during the cocking phase, contributed 31.0% and 18.1%, respectively, to forward ball velocity. The centripetal/Coriolis effects from the upper arm and forearm velocities made the largest contribution to ball velocity (average 57.8%), but the source of these effects are unknown. The lower extremities and trunk made little direct contribution to pitched ball velocity. These results may have implications with regard to pitching performance enhancement and rehabilitation.


Subject(s)
Baseball , Arm , Biomechanical Phenomena , Child , Humans , Schools , Torso
3.
J Biomech ; 96: 109339, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31561909

ABSTRACT

The role of arm swing in jumping has been examined in numerous studies of standing jumps for height and forward distance, but no prior studies have explored its effect on lateral jumping. The purpose of the present study was to investigate the effect of arm motion on standing lateral jump performance and to examine the biomechanical mechanisms that may explain differences in jump distance. Six participants executed a series of jumps for maximum lateral distance from two in-ground force platforms for two jump cases (free and restricted arms) while an eight-camera, passive-reflector, motion capture system collected 3D position data throughout the movements. Inverse kinematics and dynamics analyses were performed for all jumps using three-dimensional (3D) link models to calculate segment angular velocities, joint moments, joint powers, and joint work. Free arm motion improved standing lateral jump performance by 29% on average. This improvement was due to increased takeoff velocity and improved lateral and vertical positions of the center of gravity (CG) at takeoff and touchdown. Improved velocity and position of the CG at takeoff resulted from a 33% increase in the work done by the body. This increase in work in free arm jumps compared to restricted arm jumps was found in both upper and lower body joints with the largest improvements (>30 J) occurring at the lower back, right hip, and right shoulder.


Subject(s)
Arm/physiology , Movement , Adult , Biomechanical Phenomena , Humans , Male
4.
J Biomech ; 49(7): 1085-1093, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26949101

ABSTRACT

Most previous standing long jump studies have been based on the assumption of two-dimensional sagittal plane motion with bilateral symmetry. The purpose of this study was to investigate the validity of this assumption. Standing long jump trials were collected using six adult male participants. Each participant stood with a foot on each of two force plates and performed eight standing long jumps for maximal distance. Inverse dynamics analyses were performed for two-dimensional (2D) and three-dimensional (3D) models, and joint moments, powers, and work values were compared. The differences between these models with respect to the validity of the common planar jumping assumption were analyzed. Good agreement was observed between 2D and 3D methods for the lower body, with minimal differences in sagittal plane moments, power, and work for the ankle, knee, and lower back. There were significant, but relatively small differences in the sagittal plane kinematics and kinetics at the hip. For the upper body, the results contradicted the sagittal plane assumption in that significant moments and power were generated about the abduction/adduction axis of the shoulder and a similar amount of work was performed about both abduction/adduction and flexion/extension axes of the shoulder. The elbow also showed significant differences in power and work. These results indicate that an assumption of planar motion should be sufficient for many studies of the standing long jump that only examine lower body movement. However, for studies that include upper body motion, diagnosing injury risk, or investigating gender differences, a 3D model may be more appropriate.


Subject(s)
Mechanical Phenomena , Models, Biological , Movement , Posture/physiology , Adult , Biomechanical Phenomena , Extremities/physiology , Humans , Kinetics , Male , Sports
SELECTION OF CITATIONS
SEARCH DETAIL
...