Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19446, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376469

ABSTRACT

As a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, Fluvastatin (FLV) is used for reducing low-density lipoprotein (LDL) cholesterol as well as to prevent cardiovascular problems. FLV showed cell line cytotoxicity and antitumor effect. Melittin (MEL) exhibits antineoplastic activity and is known to be promising as a therapeutic option for cancer patients. The aim of this work was to investigate the combination of FLV with MEL loaded hybrid formula of phospholipid (PL) with alpha lipoic acid (ALA) nanoparticles to maximize anticancer tendencies. This study examines the optimization of the prepared formulation in order to minimize nanoparticles size and maximize zeta potential to potentiate cytotoxic potentialities in colon cancer cells (Caco2), cell viability, cell cycle analysis and annexin V were tested. In addition to biological markers as P53, Bax, bcl2 and Caspase 3 evaluation The combination involving FLV PL ALA MEL showed enhanced cytotoxic potentiality (IC50 = 9.242 ± 0.35 µg/mL), about twofold lower, compared to the raw FLV (IC50 = 21.74 ± 0.82 µg/mL). According to studies analyzing cell cycle, optimized FLV PL ALA MEL was found to inhibit Caco2 colon cancer cells more significantly than other therapeutic treatments, wherein a higher number of cells were found to accumulate over G2/M and pre-G1 phases, whereas G0/G1/S phases witnessed the accumulation of a lower number of cells. The optimized formulation may pave the way for a novel and more efficacious treatment for colon cancer.


Subject(s)
Colonic Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Thioctic Acid , Humans , Fluvastatin/pharmacology , Thioctic Acid/pharmacology , Melitten/pharmacology , Fatty Acids, Monounsaturated/pharmacology , Phospholipids , Caco-2 Cells , Indoles/pharmacology , Indoles/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Colonic Neoplasms/drug therapy
2.
PLoS One ; 17(2): e0264093, 2022.
Article in English | MEDLINE | ID: mdl-35202419

ABSTRACT

BACKGROUND: Lung cancer in men and women is considered the leading cause for cancer-related mortality worldwide. Anti-cancer peptides represent a potential untapped reservoir of effective cancer therapy. METHODOLOGY: Box-Behnken response surface design was applied for formulating Alendronate sodium (ALS)-mastoparan peptide (MP) nanoconjugates using Design-Expert software. The optimization process aimed at minimizing the size of the prepared ALS-MP nanoconjugates. ALS-MP nanoconjugates' particle size, encapsulation efficiency and the release profile were determined. Cytotoxicity, cell cycle, annexin V staining and caspase 3 analyses on A549 cells were carried out for the optimized formula. RESULTS: The results revealed that the optimized formula was of 134.91±5.1 nm particle size. The novel ALS-MP demonstrated the lowest IC50 (1.3 ± 0.34 µM) in comparison to ALS-Raw (37.6 ± 1.79 µM). Thus, the results indicated that when optimized ALS-MP nanoconjugate was used, the IC50 of ALS was also reduced by half. Cell cycle analysis demonstrated a significantly higher percentage of cells in the G2-M phase following the treatment with optimized ALS-MP nanoconjugates. CONCLUSION: The optimized ALS-MP formula had significantly improved the parameters related to the cytotoxic activity towards A549 cells, compared to control, MP and ALS-Raw.


Subject(s)
Alendronate/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Lung Neoplasms/drug therapy , Nanoconjugates/therapeutic use , Wasp Venoms/pharmacology , A549 Cells , Caspase 3/metabolism , Cell Cycle/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...