Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36904416

ABSTRACT

Denture care and maintenance are necessary for both denture longevity and underlying tissue health. However, the effects of disinfectants on the strength of 3D-printed denture base resins are unclear. Herein, distilled water (DW), effervescent tablet, and sodium hypochlorite (NaOCl) immersion solutions were used to investigate the flexural properties and hardness of two 3D-printed resins (NextDent and FormLabs) compared with a heat-polymerized resin. The flexural strength and elastic modulus were investigated using the three-point bending test and Vickers hardness test before (baseline) immersion and 180 days after immersion. The data were analyzed using ANOVA and Tukey's post hoc test (α = 0.05), and further verified by using electron microscopy and infrared spectroscopy. The flexural strength of all the materials decreased after solution immersion (p < 0.001). The effervescent tablet and NaOCl immersion reduced the flexural strength (p < 0.001), with the lowest values recorded with the NaOCl immersion. The elastic modulus did not significantly differ between the baseline and after the DW immersion (p > 0.05), but significantly decreased after the effervescent tablet and NaOCl immersion (p < 0.001). The hardness significantly decreased after immersion in all the solutions (p < 0.001). The immersion of the heat-polymerized and 3D-printed resins in the DW and disinfectant solutions decreased the flexural properties and hardness.

2.
J Int Soc Prev Community Dent ; 12(5): 532-539, 2022.
Article in English | MEDLINE | ID: mdl-36532322

ABSTRACT

Aims and Objective: The effect of occlusal splint therapy on the muscle activity has been addressed in the literature. However, its effect on condylar movements in subjects with normal and abnormal occlusions has not yet been investigated. This prospective clinical study addressed the effect of occlusal splint therapy on condylar movements in subjects with normal and abnormal occlusions using an electronic pantograph. Materials and Methods: Two groups of subjects were included in this study. The first group included subjects with normal occlusion, whereas the subjects in the other group were diagnosed with abnormal occlusion. The occlusal splint was fabricated, adjusted clinically, and delivered for each subject. Condylar movements were recorded using a Cadiax Compact II electronic pantograph at baseline, 2-, 4-, and 6-month follow-up periods to assess sagittal condylar inclination (SCI), immediate mandibular lateral translation (IMLT), and progressive mandibular lateral translation (PMLT). The t-test, one-way analysis of variance (ANOVA), and two-way ANOVA were used to compare the parameters between the groups and to assess the time effect on these parameters (α = 0.05). Results: Twenty subjects were recruited for this study (n = 10). Among them, 12 were women and eight were men, with a mean age of 34 years. In each group, insignificant differences were reported for each tested parameter at baseline and during the follow-up periods (P > 0.05). However, when comparing the two groups, the only significant difference was found in the SCI during the 6-month follow-up period (P = 0.014). Conclusions: Occlusal splints had an insignificant effect on the parameters SCI, IMLT, and PMLT up to 6 months of follow-up for subjects with normal or abnormal occlusion. SCI increased substantially in normal occlusion subjects compared with abnormal occlusion subjects during the 6-month follow-up period.

3.
Eur Endod J ; 5(3): 288-294, 2020 12.
Article in English | MEDLINE | ID: mdl-33353922

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the shear bond strength (SBS) of hydraulic calcium silicate (Biodentine) as a core material to the e.max ceramic restoration. METHODS: Forty discs (6 mm diameter; 2 mm thickness) were fabricated from each core material, Hydraulic calcium silicate [Biodentine™, Septodont], resin composite [Filtek™Z250 XT, 3M ESPE], and resin-modified glass ionomer cement (RMGIC) [GC Fuji II LC, GC Corporation]. Dentine surfaces of 40 extracted human permanent molars were exposed and used as a control group. All specimens were mounted in self-curing acrylic resin. One hundred sixty IPS e.max discs were fabricated (4 mm diameter; 2 mm thickness) and cemented to the core specimens with Variolink N (IvoclarVivadent). After storage in distilled water (37oC; 24h), the specimens were thermocycled 1.500 times. SBS was tested using a universal testing machine at 0.05 mm/min crosshead speed. The fracture modes were determined by a stereomicroscope at ×20 magnification. Data were analyzed using one-way analysis of variance followed by Tukey's test (P=0.05). RESULTS: The mean SBS values of four tested groups showed statistically significant differences (P<0.05). The resin composite group exhibited the highest SBS value (36.17±6.08 MPa), while the Biodentine had the lowest SBS value (21.86±3.18 MPa). Mixed failure mode was the most common failure type in all tested groups except in the Biodentine group, which had a predominantly cohesive failure. CONCLUSION: The SBS of e.max ceramic restorations cemented with resin is affected by the type of core material. Biodentine core material had the lowest SBS to e.max restoration. However, when Biodentine is indicated to be used as core material for pulp preservation, it is recommended to be covered with a layer of resin composite material to enhance its bonding strength to the e.max restoration.


Subject(s)
Ceramics , Glass Ionomer Cements , Calcium Compounds , Humans , Materials Testing , Silicates
SELECTION OF CITATIONS
SEARCH DETAIL