Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565976

ABSTRACT

Homochiral α-amino acids are widely used in pharmaceutical design as key subunits in chiral catalyst synthesis or as building blocks in synthetic biology. Many synthetic methods have been developed to access rare or unnatural variants by controlling the installation of the α-stereocentre. By contrast, and despite their importance, α-amino acids possessing ß-stereocentres are much harder to synthesize. Here we demonstrate an iridium-catalysed protocol that allows the direct upconversion of simple alkenes and glycine derivatives to give ß-substituted α-amino acids with exceptional levels of regio- and stereocontrol. Our method exploits the native directing ability of a glycine-derived N-H unit to facilitate Ir-catalysed enolization of the adjacent carbonyl. The resulting stereodefined enolate cross-couples with a styrene or α-olefin to install two contiguous stereocentres. The process offers very high levels of regio- and stereocontrol and occurs with complete atom economy. In broader terms, our reaction design offers a unique directing-group-controlled strategy for the direct stereocontrolled α-alkylation of carbonyl compounds, and provides a powerful approach for the synthesis of challenging contiguous stereocentres.

2.
Chem Sci ; 13(37): 11183-11189, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320466

ABSTRACT

Quaternary benzylic centers are accessed with high atom and step economy by Ir-catalyzed alkene hydroarylation. These studies provide unique examples of the use of non-polarized 1,1-disubstituted alkenes in branch selective Murai-type hydro(hetero)arylations. Detailed mechanistic studies have been undertaken, and these indicate that the first irreversible step is the demanding alkene carbometallation process. Structure-reactivity studies show that the efficiency of this is critically dependent on key structural features of the ligand. Computational studies have been undertaken to rationalize this experimental data, showing how more sterically demanding ligands reduce the reaction barrier via predistortion of the reacting intermediate. The key insight disclosed here will underpin the ongoing development of increasingly sophisticated branch selective Murai hydroarylations.

SELECTION OF CITATIONS
SEARCH DETAIL
...