Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebellum ; 17(3): 276-285, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29196973

ABSTRACT

The objective of this study was the identification of likely genes and mutations associated with an autosomal recessive (AR) rare spinocerebellar ataxia (SCA) phenotype in two patients with infantile onset, from a consanguineous family. Using genome-wide SNP screening, autozygosity mapping, targeted Sanger sequencing and nextgen sequencing, family segregation analysis, and comprehensive neuropanel, we discovered a novel mutation in SPTBN2. Next, we utilized multiple sequence alignment of amino acids from various species as well as crystal structures provided by protein data bank (PDB# 1WYQ and 1WJM) to model the mutation site and its effect on ß-III-spectrin. Finally, we used various bioinformatic classifiers to determine pathogenicity of the missense variant. A comprehensive clinical and diagnostic workup including radiological exams were performed on the patients as part of routine patient care. The homozygous missense variant (c.1572C>T; p.R414C) detected in exon 2 was fully segregated in the family and absent in a large ethnic cohort as well as publicly available data sets. Our comprehensive targeted sequencing approaches did not reveal any other likely candidate variants or mutations in both patients. The two male siblings presented with delayed motor milestones and cognitive and learning disability. Brain MRI revealed isolated cerebellar atrophy more marked in midline inferior vermis at ages of 3 and 6.5 years. Sequence alignments of the amino acids for ß-III-spectrin indicated that the arginine at 414 is highly conserved among various species and located towards the end of first spectrin repeat domain. Inclusive bioinformatic analysis predicted that the variant is to be damaging and disease causing. In addition to the novel mutation, a brief literature review of the previously reported mutations as well as clinical comparison of the cases were also presented. Our study reviews the previously reported SPTBN2 mutations and cases. Moreover, the novel mutation, p.R414C, adds up to the literature for the infantile-onset form of autosomal recessive ataxia associated with SPTBN2. Previously, few SPTBN2 recessive mutations have been reported in humans. Animal models especially the ß-III-/- mouse model provided insights into early coordination and gait deficit suggestive of loss-of-function. It is expected to see more recessive SPTBN2 mutations appearing in the literature during the upcoming years.


Subject(s)
Homozygote , Mutation , Spectrin/genetics , Spinocerebellar Ataxias/genetics , Age of Onset , Child , Child, Preschool , Consanguinity , Humans , Male , Models, Molecular , Pedigree , Phenotype , Siblings , Spectrin/metabolism , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/epidemiology
2.
Hum Mutat ; 38(12): 1649-1659, 2017 12.
Article in English | MEDLINE | ID: mdl-28940506

ABSTRACT

F-box and leucine-rich repeat protein 4 (FBXL4) is a mitochondrial protein whose exact function is not yet known. However, cellular studies have suggested that it plays significant roles in mitochondrial bioenergetics, mitochondrial DNA (mtDNA) maintenance, and mitochondrial dynamics. Biallelic pathogenic variants in FBXL4 are associated with an encephalopathic mtDNA maintenance defect syndrome that is a multisystem disease characterized by lactic acidemia, developmental delay, and hypotonia. Other features are feeding difficulties, growth failure, microcephaly, hyperammonemia, seizures, hypertrophic cardiomyopathy, elevated liver transaminases, recurrent infections, variable distinctive facial features, white matter abnormalities and cerebral atrophy found in neuroimaging, combined deficiencies of multiple electron transport complexes, and mtDNA depletion. Since its initial description in 2013, 36 different pathogenic variants in FBXL4 were reported in 50 affected individuals. In this report, we present 37 additional affected individuals and 11 previously unreported pathogenic variants. We summarize the clinical features of all 87 individuals with FBXL4-related mtDNA maintenance defect, review FBXL4 structure and function, map the 47 pathogenic variants onto the gene structure to assess the variants distribution, and investigate the genotype-phenotype correlation. Finally, we provide future directions to understand the disease mechanism and identify treatment strategies.


Subject(s)
DNA, Mitochondrial/genetics , F-Box Proteins/genetics , Genetic Association Studies , Mitochondrial Encephalomyopathies/genetics , Ubiquitin-Protein Ligases/genetics , Acidosis, Lactic/genetics , Cardiomyopathy, Hypertrophic/genetics , Genetic Predisposition to Disease , Humans , Kaplan-Meier Estimate , Mitochondria/genetics , Mitochondrial Encephalomyopathies/epidemiology , Mitochondrial Encephalomyopathies/pathology , Mitochondrial Proteins/genetics , Muscle Hypotonia/genetics , Mutation , Oxidative Phosphorylation , Proteome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...