Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067683

ABSTRACT

In this paper, a new peak average power and time reduction (PAPTR) based on the adaptive genetic algorithm (AGA) strategy is used in order to improve both the time reduction and PAPR value reduction for the SLM OFDM and the conventional genetic algorithm (GA) SLM-OFDM. The simulation results demonstrate that the recommended AGA technique reduces PAPR by about 3.87 dB in comparison to SLM-OFDM. Comparing the suggested AGA SLM-OFDM to the traditional GA SLM-OFDM using the same settings, a significant learning time reduction of roughly 95.56% is achieved. The PAPR of the proposed AGA SLM-OFDM is enhanced by around 3.87 dB in comparison to traditional OFDM. Also, the PAPR of the proposed AGA SLM-OFDM is roughly 0.12 dB worse than that of the conventional GA SLM-OFDM.

2.
Sensors (Basel) ; 23(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37765900

ABSTRACT

In this paper, a new physical layer authenticated encryption (PLAE) scheme based on the multi-parameter fractional Fourier transform-Orthogonal frequency division multiplexing (MP-FrFT-OFDM) is suggested for secure image transmission over the IoT network. In addition, a new robust multi-cascaded chaotic modular fractional sine map (MCC-MF sine map) is designed and analyzed. Also, a new dynamic chaotic biometric signature (DCBS) generator based on combining the biometric signature and the proposed MCC-MF sine map random chaotic sequence output is also designed. The final output of the proposed DCBS generator is used as a dynamic secret key for the MPFrFT OFDM system in which the encryption process is applied in the frequency domain. The proposed DCBS secret key generator generates a very large key space of 22200. The proposed DCBS secret keys generator can achieve the confidentiality and authentication properties. Statistical analysis, differential analysis and a key sensitivity test are performed to estimate the security strengths of the proposed DCBS-MP-FrFT-OFDM cryptosystem over the IoT network. The experimental results show that the proposed DCBS-MP-FrFT-OFDM cryptosystem is robust against common signal processing attacks and provides a high security level for image encryption application.

3.
Sensors (Basel) ; 23(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514882

ABSTRACT

The demand for cybersecurity is growing to safeguard information flow and enhance data privacy. This essay suggests a novel authenticated public key elliptic curve based on a deep convolutional neural network (APK-EC-DCNN) for cybersecurity image encryption application. The public key elliptic curve discrete logarithmic problem (EC-DLP) is used for elliptic curve Diffie-Hellman key exchange (EC-DHKE) in order to generate a shared session key, which is used as the chaotic system's beginning conditions and control parameters. In addition, the authenticity and confidentiality can be archived based on ECC to share the EC parameters between two parties by using the EC-DHKE algorithm. Moreover, the 3D Quantum Chaotic Logistic Map (3D QCLM) has an extremely chaotic behavior of the bifurcation diagram and high Lyapunov exponent, which can be used in high-level security. In addition, in order to achieve the authentication property, the secure hash function uses the output sequence of the DCNN and the output sequence of the 3D QCLM in the proposed authenticated expansion diffusion matrix (AEDM). Finally, partial frequency domain encryption (PFDE) technique is achieved by using the discrete wavelet transform in order to satisfy the robustness and fast encryption process. Simulation results and security analysis demonstrate that the proposed encryption algorithm achieved the performance of the state-of-the-art techniques in terms of quality, security, and robustness against noise- and signal-processing attacks.

SELECTION OF CITATIONS
SEARCH DETAIL
...