Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 889, 2018.
Article in English | MEDLINE | ID: mdl-29740455

ABSTRACT

We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.


Subject(s)
Antibodies, Monoclonal/immunology , Drug Discovery/methods , Genes, Immunoglobulin Heavy Chain/genetics , Genes, Immunoglobulin Light Chain/genetics , Immunoglobulin kappa-Chains/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Antigens/administration & dosage , Antigens/immunology , B-Lymphocytes/immunology , Germinal Center/cytology , Germinal Center/immunology , High-Throughput Nucleotide Sequencing , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin kappa-Chains/genetics , Models, Animal , Rats , Rats, Sprague-Dawley , Rats, Transgenic
2.
MAbs ; 10(4): 539-546, 2018.
Article in English | MEDLINE | ID: mdl-29485921

ABSTRACT

Monoclonal antibodies are commonly assumed to be monospecific, but anecdotal studies have reported genetic diversity in antibody heavy chain and light chain genes found within individual hybridomas. As the prevalence of such diversity has never been explored, we analyzed 185 random hybridomas, in a large multicenter dataset. The hybridomas analyzed were not biased towards those with cloning difficulties or known to have additional chains. Of the hybridomas we evaluated, 126 (68.1%) contained no additional productive chains, while the remaining 59 (31.9%) contained one or more additional productive heavy or light chains. The expression of additional chains degraded properties of the antibodies, including specificity, binding signal and/or signal-to-noise ratio, as determined by enzyme-linked immunosorbent assay and immunohistochemistry. The most abundant mRNA transcripts found in a hybridoma cell line did not necessarily encode the antibody chains providing the correct specificity. Consequently, when cloning antibody genes, functional validation of all possible VH and VL combinations is required to identify those with the highest affinity and lowest cross-reactivity. These findings, reflecting the current state of hybridomas used in research, reiterate the importance of using sequence-defined recombinant antibodies for research or diagnostic use.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Hybridomas/immunology , Animals , Antibodies, Monoclonal/genetics , Antibody Specificity/genetics , Genes, Immunoglobulin Heavy Chain/genetics , Genes, Immunoglobulin Heavy Chain/immunology , Genes, Immunoglobulin Light Chain/genetics , Genes, Immunoglobulin Light Chain/immunology , Humans
3.
Genome Biol ; 13(9): R50, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22951020

ABSTRACT

BACKGROUND: The binding of transcription factors to specific locations in the genome is integral to the orchestration of transcriptional regulation in cells. To characterize transcription factor binding site function on a large scale, we predicted and mutagenized 455 binding sites in human promoters. We carried out functional tests on these sites in four different immortalized human cell lines using transient transfections with a luciferase reporter assay, primarily for the transcription factors CTCF, GABP, GATA2, E2F, STAT, and YY1. RESULTS: In each cell line, between 36% and 49% of binding sites made a functional contribution to the promoter activity; the overall rate for observing function in any of the cell lines was 70%. Transcription factor binding resulted in transcriptional repression in more than a third of functional sites. When compared with predicted binding sites whose function was not experimentally verified, the functional binding sites had higher conservation and were located closer to transcriptional start sites (TSSs). Among functional sites, repressive sites tended to be located further from TSSs than were activating sites. Our data provide significant insight into the functional characteristics of YY1 binding sites, most notably the detection of distinct activating and repressing classes of YY1 binding sites. Repressing sites were located closer to, and often overlapped with, translational start sites and presented a distinctive variation on the canonical YY1 binding motif. CONCLUSIONS: The genomic properties that we found to associate with functional TF binding sites on promoters -- conservation, TSS proximity, motifs and their variations -- point the way to improved accuracy in future TFBS predictions.


Subject(s)
Promoter Regions, Genetic , Transcription Factors/metabolism , YY1 Transcription Factor/metabolism , Binding Sites , Cell Line , Genome, Human , Humans , Nucleotide Motifs , Transcription Initiation Site
4.
J Vis Exp ; (55)2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21988797

ABSTRACT

MicroRNAs (miRNAs) are important regulators of gene expression and play a role in many biological processes. More than 700 human miRNAs have been identified so far with each having up to hundreds of unique target mRNAs. Computational tools, expression and proteomics assays, and chromatin-immunoprecipitation-based techniques provide important clues for identifying mRNAs that are direct targets of a particular miRNA. In addition, 3'UTR-reporter assays have become an important component of thorough miRNA target studies because they provide functional evidence for and quantitate the effects of specific miRNA-3'UTR interactions in a cell-based system. To enable more researchers to leverage 3'UTR-reporter assays and to support the scale-up of such assays to high-throughput levels, we have created a genome-wide collection of human 3'UTR luciferase reporters in the highly-optimized LightSwitch Luciferase Assay System. The system also includes synthetic miRNA target reporter constructs for use as positive controls, various endogenous 3'UTR reporter constructs, and a series of standardized experimental protocols. Here we describe a method for co-transfection of individual 3'UTR-reporter constructs along with a miRNA mimic that is efficient, reproducible, and amenable to high-throughput analysis.


Subject(s)
3' Untranslated Regions/genetics , Luciferases/genetics , MicroRNAs/genetics , Transfection/methods , Genes, Reporter , Humans
5.
J Biol Chem ; 286(20): 18066-78, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21402708

ABSTRACT

MicroRNAs function as important regulators of gene expression and are commonly linked to development, differentiation, and diseases such as cancer. To better understand their roles in various biological processes, identification of genes targeted by microRNAs is necessary. Although prediction tools have significantly helped with this task, experimental approaches are ultimately required for extensive target search and validation. We employed two independent yet complementary high throughput approaches to map a large set of mRNAs regulated by miR-122, a liver-specific microRNA implicated in regulation of fatty acid and cholesterol metabolism, hepatitis C infection, and hepatocellular carcinoma. The combination of luciferase reporter-based screening and shotgun proteomics resulted in the identification of 260 proteins significantly down-regulated in response to miR-122 in at least one method, 113 of which contain predicted miR-122 target sites. These proteins are enriched for functions associated with the cell cycle, differentiation, proliferation, and apoptosis. Among these miR-122-sensitive proteins, we identified a large group with strong connections to liver metabolism, diseases, and hepatocellular carcinoma. Additional analyses, including examination of consensus binding motifs for both miR-122 and target sequences, provide further insight into miR-122 function.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Genes, Neoplasm , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line , Humans , Liver Neoplasms/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics
6.
Toxicol Sci ; 112(1): 153-63, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19502547

ABSTRACT

Cellular metabolism depends on the availability of oxygen and the major regulator of oxygen homeostasis is hypoxia-inducible factor 1 (HIF-1), a highly conserved transcription factor that plays an essential role in cellular and systemic homeostatic responses to hypoxia. HIF-1 is a heterodimeric transcription factor composed of hypoxia-inducible HIF-1alpha and constitutively expressed HIF-1beta. Under hypoxic conditions, the two subunits dimerize, allowing translocation of the HIF-1 complex to the nucleus where it binds to hypoxia-response elements (HREs) and activates expression of target genes implicated in angiogenesis, cell growth, and survival. The HIF-1 pathway is essential to normal growth and development, and is involved in the pathophysiology of cancer, inflammation, and ischemia. Thus, there is considerable interest in identifying compounds that modulate the HIF-1 signaling pathway. To assess the ability of environmental chemicals to stimulate the HIF-1 signaling pathway, we screened a National Toxicology Program collection of 1408 compounds using a cell-based beta-lactamase HRE reporter gene assay in a quantitative high-throughput screening (qHTS) format. Twelve active compounds were identified. These compounds were tested in a confirmatory assay for induction of vascular endothelial growth factor, a known hypoxia target gene, and confirmed compounds were further tested for their ability to mimic the effect of a reduced-oxygen environment on hypoxia-regulated promoter activity. Based on this testing strategy, three compounds (o-phenanthroline, iodochlorohydroxyquinoline, cobalt sulfate heptahydrate) were confirmed as hypoxia mimetics, whereas two compounds (7-diethylamino-4-methylcoumarin and 7,12-dimethylbenz(a)anthracence) were found to interact with HIF-1 in a manner different from hypoxia. These results demonstrate the effectiveness of qHTS in combination with secondary assays for identification of HIF-1alpha inducers and for distinguishing among inducers based on their pattern of activated hypoxic target genes. Identification of environmental compounds having HIF-1alpha activation activity in cell-based assays may be useful for prioritizing chemicals for further testing as hypoxia-response inducers in vivo.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Cell Line , Clioquinol/pharmacology , Cobalt/pharmacology , Drug Evaluation, Preclinical , Genes, Reporter , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phenanthrolines/pharmacology , Signal Transduction , beta-Lactamases/genetics
7.
Am J Hum Genet ; 77(1): 64-77, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15897982

ABSTRACT

Elevated plasma levels of C-reactive protein (CRP), an inflammation-sensitive marker, have emerged as an important predictor of future cardiovascular disease and metabolic abnormalities in apparently healthy men and women. Here, we performed a systematic survey of common nucleotide variation across the genomic region encompassing the CRP gene locus. Of the common single-nucleotide polymorphisms (SNPs) identified, several in the CRP promoter region are strongly associated with CRP levels in a large cohort study of cardiovascular risk in European American and African American young adults. We also demonstrate the functional importance of these SNPs in vitro.


Subject(s)
C-Reactive Protein/genetics , Polymorphism, Genetic , Promoter Regions, Genetic , Adolescent , Base Sequence , C-Reactive Protein/metabolism , Female , Gene Frequency , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide
8.
Genome Res ; 14(1): 62-6, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14707170

ABSTRACT

The alignment of full-length human cDNA sequences to the finished sequence of the human genome provides a unique opportunity to study the distribution of genes throughout the genome. By analyzing the distances between 23,752 genes, we identified a class of divergently transcribed gene pairs, representing more than 10% of the genes in the genome, whose transcription start sites are separated by less than 1000 base pairs. Although this bidirectional arrangement has been previously described in humans and other species, the prevalence of bidirectional gene pairs in the human genome is striking, and the mechanisms of regulation of all but a few bidirectional genes are unknown. Our work shows that the transcripts of many bidirectional pairs are coexpressed, but some are antiregulated. Further, we show that many of the promoter segments between two bidirectional genes initiate transcription in both directions and contain shared elements that regulate both genes. We also show that the bidirectional arrangement is often conserved among mouse orthologs. These findings demonstrate that a bidirectional arrangement provides a unique mechanism of regulation for a significant number of mammalian genes.


Subject(s)
Genome, Human , Promoter Regions, Genetic/genetics , Animals , Cell Line , Cell Line, Tumor , DNA Repair/genetics , DNA Repair/physiology , Embryo, Mammalian , Fibroblasts/chemistry , Fibroblasts/metabolism , Gene Expression Regulation/genetics , Genes/genetics , Genes/physiology , Genome , HeLa Cells , Humans , Mice , Promoter Regions, Genetic/physiology , Sequence Analysis, DNA/methods , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...