Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 48: 128243, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34246753

ABSTRACT

A growing number of diseases are linked to the misfolding of integral membrane proteins, and many of these proteins are targeted for ubiquitin-proteasome-dependent degradation. One such substrate is a mutant form of the Cystic Fibrosis Transmembrane Conductance Regulator (F508del-CFTR). Protein folding "correctors" that repair the F508del-CFTR folding defect have entered the clinic, but they are unlikely to protect the entire protein from degradation. To increase the pool of F508del-CFTR protein that is available for correction by existing treatments, we determined a structure-activity relationship to improve the efficacy and reduce the toxicity of an inhibitor of the E1 ubiquitin activating enzyme that facilitates F508del-CFTR maturation. A resulting lead compound lacked measurable toxicity and improved the ability of an FDA-approved corrector to augment F508del-CFTR folding, transport the protein to the plasma membrane, and maintain its activity. These data support a proof-of-concept that modest inhibition of substrate ubiquitination improves the activity of small molecule correctors to treat CF and potentially other protein conformational disorders.


Subject(s)
Benzoates/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Furans/pharmacology , Pyrazoles/pharmacology , Ubiquitin/antagonists & inhibitors , Benzoates/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dose-Response Relationship, Drug , Furans/chemistry , Humans , Molecular Structure , Protein Folding/drug effects , Pyrazoles/chemistry , Structure-Activity Relationship , Ubiquitin/metabolism , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...