Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Struct Chem Imaging ; 2(1): 12, 2017.
Article in English | MEDLINE | ID: mdl-27738593

ABSTRACT

The present work explores electron diffraction methods for studying the structure of metallic clusters stabilized with thiol groups, which are susceptible to structural damage caused by electron beam irradiation. There is a compromise between the electron dose used and the size of the clusters since they have small interaction volume with electrons and as a consequence weak reflections in the diffraction patterns. The common approach of recording individual clusters using nanobeam diffraction has the problem of an increased current density. Dosage can be reduced with the use of a smaller condenser aperture and a higher condenser lens excitation, but even with those set ups collection times tend to be high. For that reason, the methods reported herein collects in a faster way diffraction patterns through the scanning across the clusters under nanobeam diffraction mode. In this way, we are able to collect a map of diffraction patterns, in areas with dispersed clusters, with short exposure times (milliseconds) using a high sensitive CMOS camera. When these maps are compared with their theoretical counterparts, oscillations of the clusters can be observed. The stability of the patterns acquired demonstrates that our methods provide a systematic and precise way to unveil the structure of atomic clusters without extensive detrimental damage of their crystallinity.

2.
Small ; 12(3): 294-300, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26618498

ABSTRACT

Conditions for the dispersion of molybdenum disulfide (MoS2) in aqueous solution at concentrations up to 0.12 mg mL(-1) using a range of nonionic, biocompatible block copolymers (i.e., Pluronics and Tetronics) are identified. Furthermore, the optimal Pluronic dispersant for MoS2 is found to be effective for a range of other 2D materials such as molybdenum diselenide, tungsten diselenide, tungsten disulfide, tin selenide, and boron nitride.


Subject(s)
Biocompatible Materials/chemistry , Nanostructures/chemistry , Polymers/chemistry , Water/chemistry , Ions , Optical Phenomena , Particle Size , Poloxamer/chemistry , Spectrum Analysis
3.
Science ; 350(6267): 1513-6, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26680195

ABSTRACT

At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.


Subject(s)
Boron/chemistry , Fullerenes/chemistry , Anisotropy , Silver/chemistry , Vacuum
4.
J Phys Chem C Nanomater Interfaces ; 119(1): 710-715, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25598860

ABSTRACT

MoS2 has been the focus of extensive research due to its potential applications. More recently, the mechanical properties of MoS2 layers have raised interest due to applications in flexible electronics. In this article, we show in situ transmission electron microcsopy (TEM) observation of the mechanical response of a few layers of MoS2 to an external load. We used a scanning tunneling microscope (STM) tip mounted on a TEM stage to induce deformation on nanosheets of MoS2 containing few layers. The results confirm the outstanding mechanical properties on the MoS2. The layers can be bent close to 180°. However, when the tip is retrieved the initial structure is recovered. Evidence indicates that there is a significant bond reconstruction during the bending with an outstanding capability to recover the initial bond structure. The results show that flexibility of three layers of MoS2 remains the same as a single layer while increasing the bending modulus by 3 orders of magnitude. Our findings are consistent with theoretical calculations and confirm the great potential of MoS2 for applications.

5.
Nat Commun ; 5: 5478, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25391315

ABSTRACT

Two-dimensional transition metal dichalcogenides have emerged as leading successors to graphene due to their diverse properties, which depend sensitively on sample thickness. Although solution-based exfoliation methods hold promise for scalable production of these materials, existing techniques introduce irreversible structural defects and/or lack sufficient control over the sample thickness. In contrast, previous work on carbon nanotubes and graphene has shown that isopycnic density gradient ultracentrifugation can produce structurally and electronically monodisperse nanomaterial populations. However, this approach cannot be directly applied to transition metal dichalcogenides due to their high intrinsic buoyant densities when encapsulated with ionic small molecule surfactants. Here, we overcome this limitation and thus demonstrate thickness sorting of pristine molybdenum disulfide (MoS2) by employing a block copolymer dispersant composed of a central hydrophobic unit flanked by hydrophilic chains that effectively reduces the overall buoyant density in aqueous solution. The resulting solution-processed monolayer MoS2 samples exhibit strong photoluminescence without further chemical treatment.


Subject(s)
Centrifugation, Density Gradient/methods , Chalcogens/chemistry , Disulfides/chemistry , Molybdenum/chemistry , Nanostructures/chemistry , Disulfides/isolation & purification , Molybdenum/isolation & purification , Polymers/chemistry , Solutions/chemistry
6.
Microsc Res Tech ; 77(12): 980-5, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25123258

ABSTRACT

The control growth of the cubic meta-stable nitride phase is a challenge because of the crystalline nature of the nitrides to grow in the hexagonal phase, and accurately identifying the phases and crystal orientations in local areas of the nitride semiconductor films is important for device applications. In this study, we obtained phase and orientation maps of a metastable cubic GaN thin film using precession electron diffraction (PED) under scanning mode with a point-to-point 1 nm probe size beam. The phase maps revealed a cubic GaN thin film with hexagonal GaN inclusions of columnar shape. The orientation maps showed that the inclusions have nucleation sites at the cubic GaN {111} facets. Different growth orientations of the inclusions were observed due to the possibility of the hexagonal {0001} plane to grow on any different {111} cubic facet. However, the generation of the hexagonal GaN inclusions is not always due to a 60° rotation of a {111} plane. These findings show the advantage of using PED along with phase and orientation mapping, and the analysis can be extended to differently composed semiconductor thin films.

7.
Chem Mater ; 26(18): 5401-5411, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25678743

ABSTRACT

A series of In2O3 thin films, ranging from X-ray diffraction amorphous to highly crystalline, were grown on amorphous silica substrates using pulsed laser deposition by varying the film growth temperature. The amorphous-to-crystalline transition and the structure of amorphous In2O3 were investigated by grazing angle X-ray diffraction (GIXRD), Hall transport measurement, high resolution transmission electron microscopy (HRTEM), electron diffraction, extended X-ray absorption fine structure (EXAFS), and ab initio molecular dynamics (MD) liquid-quench simulation. On the basis of excellent agreement between the EXAFS and MD results, a model of the amorphous oxide structure as a network of InO x polyhedra was constructed. Mechanisms for the transport properties observed in the crystalline, amorphous-to-crystalline, and amorphous deposition regions are presented, highlighting a unique structure-property relationship.

SELECTION OF CITATIONS
SEARCH DETAIL
...