Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Curr Res Neurobiol ; 5: 100112, 2023.
Article in English | MEDLINE | ID: mdl-38020812

ABSTRACT

SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.

2.
PLoS Pathog ; 19(9): e1011658, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37747879

ABSTRACT

Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.


Subject(s)
Interleukin-4 , Macrophage Activation , Animals , Mice , Choline/metabolism , Cytokines/metabolism , Interleukin-4/metabolism , Macrophages , Mice, Inbred C57BL , Up-Regulation
3.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37137236

ABSTRACT

MOTIVATION: There is a need for easily accessible implementations that measure the strength of both linear and non-linear relationships between metabolites in biological systems as an approach for data-driven network development. While multiple tools implement linear Pearson and Spearman methods, there are no such tools that assess distance correlation. RESULTS: We present here SIgned Distance COrrelation (SiDCo). SiDCo is a GUI platform for calculation of distance correlation in omics data, measuring linear and non-linear dependencies between variables, as well as correlation between vectors of different lengths, e.g. different sample sizes. By combining the sign of the overall trend from Pearson's correlation with distance correlation values, we further provide a novel "signed distance correlation" of particular use in metabolomic and lipidomic analyses. Distance correlations can be selected as one-to-one or one-to-all correlations, showing relationships between each feature and all other features one at a time or in combination. Additionally, we implement "partial distance correlation," calculated using the Gaussian Graphical model approach adapted to distance covariance. Our platform provides an easy-to-use software implementation that can be applied to the investigation of any dataset. AVAILABILITY AND IMPLEMENTATION: The SiDCo software application is freely available at https://complimet.ca/sidco. Supplementary help pages are provided at https://complimet.ca/sidco. Supplementary Material shows an example of an application of SiDCo in metabolomics.


Subject(s)
Metabolomics , Software , Lipidomics , Normal Distribution , Sample Size
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769329

ABSTRACT

Sphingolipids are exceptionally diverse, comprising hundreds of unique species. The bulk of circulating sphingolipids are synthesized in the liver, thereby plasma sphingolipid profiles represent reliable surrogates of hepatic sphingolipid metabolism and content. As changes in plasma sphingolipid content have been associated to exposure to drugs inducing hepatotoxicity both in vitro and in rodents, in the present study the translatability of the preclinical data was assessed by analyzing the plasma of patients with suspected drug-induced liver injury (DILI) and control subjects. DILI patients, whether intrinsic or idiosyncratic cases, had no alterations in total sphingoid base levels and profile composition compared to controls, whereby cardiovascular disease (CVD) was a confounding factor. Upon exclusion of CVD individuals, elevation of 1-deoxysphingosine (1-deoxySO) in the DILI group emerged. Notably, 1-deoxySO values did not correlate with ALT values. While 1-deoxySO was elevated in all DILI cases, only intrinsic DILI cases concomitantly displayed reduction of select shorter chain sphingoid bases. Significant perturbation of the sphingolipid metabolism observed in this small exploratory clinical study is discussed and put into context, in the consideration that sphingolipids might contribute to the onset and progression of DILI, and that circulating sphingoid bases may function as mechanistic markers to study DILI pathophysiology.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Humans , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Sphingolipids/metabolism , Liver/metabolism
5.
EBioMedicine ; 83: 104192, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35965199

ABSTRACT

BACKGROUND: Current paradigms for predicting weight loss in response to energy restriction have general validity but a subset of individuals fail to respond adequately despite documented diet adherence. Patients in the bottom 20% for rate of weight loss following a hypocaloric diet (diet-resistant) have been found to have less type I muscle fibres and lower skeletal muscle mitochondrial function, leading to the hypothesis that physical exercise may be an effective treatment when diet alone is inadequate. In this study, we aimed to assess the efficacy of exercise training on mitochondrial function in women with obesity with a documented history of minimal diet-induced weight loss. METHODS: From over 5000 patient records, 228 files were reviewed to identify baseline characteristics of weight loss response from women with obesity who were previously classified in the top or bottom 20% quintiles based on rate of weight loss in the first 6 weeks during which a 900 kcal/day meal replacement was consumed. A subset of 20 women with obesity were identified based on diet-resistance (n=10) and diet sensitivity (n=10) to undergo a 6-week supervised, progressive, combined aerobic and resistance exercise intervention. FINDINGS: Diet-sensitive women had lower baseline adiposity, higher fasting insulin and triglycerides, and a greater number of ATP-III criteria for metabolic syndrome. Conversely in diet-resistant women, the exercise intervention improved body composition, skeletal muscle mitochondrial content and metabolism, with minimal effects in diet-sensitive women. In-depth analyses of muscle metabolomes revealed distinct group- and intervention- differences, including lower serine-associated sphingolipid synthesis in diet-resistant women following exercise training. INTERPRETATION: Exercise preferentially enhances skeletal muscle metabolism and improves body composition in women with a history of minimal diet-induced weight loss. These clinical and metabolic mechanism insights move the field towards better personalised approaches for the treatment of distinct obesity phenotypes. FUNDING: Canadian Institutes of Health Research (CIHR-INMD and FDN-143278; CAN-163902; CIHR PJT-148634).


Subject(s)
Insulins , Obesity , Adenosine Triphosphate/metabolism , Canada , Diet, Reducing , Exercise/physiology , Female , Humans , Insulins/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Serine/metabolism , Sphingolipids/metabolism , Triglycerides/metabolism , Weight Loss
6.
Life Sci Alliance ; 5(2)2022 02.
Article in English | MEDLINE | ID: mdl-34785538

ABSTRACT

The accumulation of sphingolipid species in the cell contributes to the development of obesity and neurological disease. However, the subcellular localization of sphingolipid-synthesizing enzymes is unclear, limiting the understanding of where and how these lipids accumulate inside the cell and why they are toxic. Here, we show that SPTLC2, a subunit of the serine palmitoyltransferase (SPT) complex, catalyzing the first step in de novo sphingolipid synthesis, localizes dually to the ER and the outer mitochondrial membrane. We demonstrate that mitochondrial SPTLC2 interacts and forms a complex in trans with the ER-localized SPT subunit SPTLC1. Loss of SPTLC2 prevents the synthesis of mitochondrial sphingolipids and protects from palmitate-induced mitochondrial toxicity, a process dependent on mitochondrial ceramides. Our results reveal the in trans assembly of an enzymatic complex at an organellar membrane contact site, providing novel insight into the localization of sphingolipid synthesis and the composition and function of ER-mitochondria contact sites.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Serine C-Palmitoyltransferase/metabolism , Biological Transport , Multienzyme Complexes/metabolism
7.
Bioinformatics ; 38(6): 1593-1599, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34951624

ABSTRACT

MOTIVATION: Bioinformatic tools capable of annotating, rapidly and reproducibly, large, targeted lipidomic datasets are limited. Specifically, few programs enable high-throughput peak assessment of liquid chromatography-electrospray ionization tandem mass spectrometry data acquired in either selected or multiple reaction monitoring modes. RESULTS: We present here Bayesian Annotations for Targeted Lipidomics, a Gaussian naïve Bayes classifier for targeted lipidomics that annotates peak identities according to eight features related to retention time, intensity, and peak shape. Lipid identification is achieved by modeling distributions of these eight input features across biological conditions and maximizing the joint posterior probabilities of all peak identities at a given transition. When applied to sphingolipid and glycerophosphocholine selected reaction monitoring datasets, we demonstrate over 95% of all peaks are rapidly and correctly identified. AVAILABILITY AND IMPLEMENTATION: BATL software is freely accessible online at https://complimet.ca/batl/ and is compatible with Safari, Firefox, Chrome and Edge. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Lipidomics , Software , Bayes Theorem , Mass Spectrometry , Chromatography, Liquid/methods
8.
Dev Cell ; 56(22): 3128-3145.e15, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34762852

ABSTRACT

Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.


Subject(s)
Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Organogenesis/drug effects , Sphingolipids/pharmacology , Animals , Cell Differentiation/physiology , Gene Expression Regulation/physiology , Humans , Lymphatic Vessels/drug effects , Mice , Organogenesis/physiology , Repressor Proteins/physiology
9.
Free Radic Biol Med ; 164: 139-148, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33450378

ABSTRACT

Chronic kidney disease (CKD) leads to deep changes in lipid metabolism and obvious dyslipidemia. The dysregulation of lipid metabolism in turn results in CKD progression and the complications of cardiovascular diseases. To obtain a profound insight into the associated dyslipidemia in CKD, we performed lipidomic analysis to measure lipid metabolites in the serum from a rat 5/6 nephrectomy (5/6 Nx) model of CKD as well as in the serum from CKD patients. HK-2 cells were also used to examine oxidative stress-induced sphingolipid changes. Totally 182 lipid species were identified in 5/6 Nx rats. We found glycerolipids, total free fatty acids, and sphingolipids levels were significantly upregulated in 5/6 Nx rats. The atypical sphingolipids, 1-deoxysphingolipids, were significantly altered in both CKD animals and human CKD patients. The levels of 1-deoxysphingolipids directly relevant to the level of oxidative stress in vivo and in vitro. These results demonstrate that 1-deoxysphingolipid levels are increased in CKD and this increase directly correlates with increased kidney oxidative stress.


Subject(s)
Renal Insufficiency, Chronic , Animals , Humans , Kidney/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/metabolism , Sphingolipids/metabolism
10.
Liver Int ; 40(4): 844-859, 2020 04.
Article in English | MEDLINE | ID: mdl-31883408

ABSTRACT

BACKGROUND & AIMS: Patients with non-alcoholic fatty liver disease (NAFLD) exhibit higher levels of plasma 1-deoxysphingolipids than healthy individuals. The aim of this study was to investigate the role of farnesoid X receptor (FXR) in 1-deoxysphingolipid de novo synthesis and degradation. METHODS: Mice were fed with a high-fat diet (HFD) to induce obesity and NAFLD, and then treated with the FXR ligand obeticholic acid (OCA). Histology and gene expression analysis were performed on liver tissue. Sphingolipid patterns from NAFLD patients and mouse models were assessed by liquid chromatography-mass spectrometry. The molecular mechanism underlying the effect of FXR activation on sphingolipid metabolism was studied in Huh7 cells and primary cultured hepatocytes, as well as in a 1-deoxysphinganine-treated mouse model. RESULTS: 1-deoxysphingolipids were increased in both NAFLD patients and mouse models. FXR activation by OCA protected the liver against oxidative stress, apoptosis, and reduced 1-deoxysphingolipid levels, both in a HFD-induced mouse model of obesity and in 1-deoxysphinganine-treated mice. In vitro, FXR activation lowered intracellular 1-deoxysphingolipid levels by inducing Cyp4f-mediated degradation, but not by inhibiting de novo synthesis, thereby protecting hepatocytes against doxSA-induced cytotoxicity, mitochondrial damage, and apoptosis. Overexpression of Cyp4f13 in cells was sufficient to ameliorate doxSA-induced cytotoxicity. Treatment with the Cyp4f pan-inhibitor HET0016 or FXR knock-down fully abolished the protective effect of OCA, indicating that OCA-mediated 1-deoxysphingolipid degradation is FXR and Cyp4f dependent. CONCLUSIONS: Our study identifies FXR-Cyp4f as a novel regulatory pathway for 1-deoxysphingolipid metabolism. FXR activation represents a promising therapeutic strategy for patients with metabolic syndrome and NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Amidines , Animals , Humans , Liver , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear , Sphingolipids
11.
Front Neurosci ; 13: 328, 2019.
Article in English | MEDLINE | ID: mdl-31031582

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, the main pathological hallmark of which is the accumulation of α-synuclein (α-syn) and the formation of filamentous aggregates called Lewy bodies in the brainstem, limbic system, and cortical areas. Lipidomics is a newly emerging field which can provide fresh insights and new answers that will enhance our capacity for early diagnosis, tracking disease progression, predicting critical endpoints, and identifying risk in pre-symptomatic persons. In recent years, lipids have been implicated in many aspects of PD pathology. Biophysical and lipidomic studies have demonstrated that α-syn binds preferentially not only to specific lipid families but also to specific molecular species and that these lipid-protein complexes enhance its interaction with synaptic membranes, influence its oligomerization and aggregation, and interfere with the catalytic activity of cytoplasmic lipid enzymes and lysosomal lipases, thereby affecting lipid metabolism. The genetic link between aberrant lipid metabolism and PD is even more direct, with mutations in GBA and SMPD1 enhancing PD risk in humans and loss of GALC function increasing α-syn aggregation and accumulation in experimental murine models. Moreover, a number of lipidomic studies have reported PD-specific lipid alterations in both patient brains and plasma, including alterations in the lipid composition of lipid rafts in the frontal cortex. A further aspect of lipid dysregulation promoting PD pathogenesis is oxidative stress and inflammation, with proinflammatory lipid mediators such as platelet activating factors (PAFs) playing key roles in arbitrating the progressive neurodegeneration seen in PD linked to α-syn intracellular trafficking. Lastly, there are a number of genetic risk factors of PD which are involved in normal lipid metabolism and function. Genes such as PLA2G6 and SCARB2, which are involved in glycerophospholipid and sphingolipid metabolism either directly or indirectly are associated with risk of PD. This review seeks to describe these facets of metabolic lipid dysregulation as they relate to PD pathology and potential pathomechanisms involved in disease progression, while highlighting incongruous findings and gaps in knowledge that necessitate further research.

12.
Mol Genet Metab ; 125(1-2): 73-78, 2018 09.
Article in English | MEDLINE | ID: mdl-30037504

ABSTRACT

BACKGROUND: 1-Deoxysphingolipids (1-deoxySLs) are atypical sphingolipids. They are formed during sphingolipid de novo synthesis by the enzyme serine palmitoyltransferase, due to the alternate use of alanine over its canonical substrate serine. Pathologically elevated 1-deoxySL are involved in several neurological and metabolic disorders. The objective of this study was to investigate the role of 1-deoxySL in glycogen storage disease type I (GSDI). METHODS: In this prospective, longitudinal observational study (median follow-up 1.8y), the plasma 1-deoxySL profile was analyzed in 15 adult GSDI patients (12 GSDIa, 3 GSDIb), and 31 healthy controls, along with standard parameters for monitoring GSDI. RESULTS: 1-Deoxysphinganine (1-deoxySA) concentrations were elevated in GSDI compared to controls (191 ±â€¯129 vs 35 ±â€¯14 nmol/l, p < 0.0001). Concordant with the mechanism of 1-deoxySL synthesis, plasma alanine was higher (625 ±â€¯182 vs 398 ±â€¯90 µmol/l, p < 0.0001), while serine was lower in GSDI than in controls (88 ±â€¯22 vs 110 ±â€¯18 µmol/l. p < 0.001). Accordingly, serine, alanine and triglycerides were determinants of 1-deoxySA in the longitudinal analysis of GSDIa. 1-deoxySA concentrations correlated with the occurrence of low blood glucose (area under the curve below 4 mmol/l) in continuous glucose monitoring. The 1-deoxySL profile in GSDIb was distinct from GSDIa, with a different ratio of saturated to unsaturated 1-deoxySL. CONCLUSION: In addition to the known abnormalities of lipoproteins, GSDI patients also have a disturbed sphingolipid metabolism with elevated plasma 1-deoxySL concentrations. 1-DeoxySA relates to the occurrence of low blood glucose, and may constitute a potential new biomarker for assessing metabolic control. GSDIa and Ib have distinct 1-deoxySL profiles indicating that both GSD subtypes have diverse phenotypes regarding lipid metabolism.


Subject(s)
Glycogen Storage Disease Type I/blood , Lipid Metabolism/genetics , Sphingolipids/blood , Adolescent , Adult , Alanine/blood , Female , Glucose/metabolism , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/pathology , Humans , Male , Serine/blood , Serine C-Palmitoyltransferase/genetics , Sphingolipids/genetics , Young Adult
13.
J Lipid Res ; 58(1): 42-59, 2017 01.
Article in English | MEDLINE | ID: mdl-27881717

ABSTRACT

1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetic Neuropathies/blood , Hereditary Sensory and Autonomic Neuropathies/blood , Sphingolipids/blood , Animals , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/pathology , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Lipids/blood , Male , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Oxidoreductases/metabolism , Peripheral Nerves/metabolism , Peripheral Nerves/pathology , Sphingolipids/chemical synthesis , Sphingolipids/pharmacology
14.
J Lipid Res ; 58(1): 60-71, 2017 01.
Article in English | MEDLINE | ID: mdl-27872144

ABSTRACT

The 1-deoxysphingolipids (1-deoxySLs) are atypical sphingolipids (SLs) that are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during SL synthesis. The 1-deoxySLs are toxic to neurons and pancreatic ß-cells. Pathologically elevated 1-deoxySLs cause the inherited neuropathy, hereditary sensory autonomic neuropathy type 1 (HSAN1), and are also found in T2D. Diabetic sensory polyneuropathy (DSN) and HSAN1 are clinically very similar, suggesting that 1-deoxySLs may be implicated in both pathologies. The 1-deoxySLs are considered to be dead-end metabolites, as they lack the C1-hydroxyl group, which is essential for the canonical degradation of SLs. Here, we report a previously unknown metabolic pathway, which is capable of degrading 1-deoxySLs. Using a variety of metabolic labeling approaches and high-resolution high-accuracy MS, we identified eight 1-deoxySL downstream metabolites, which appear to be formed by cytochrome P450 (CYP)4F enzymes. Comprehensive inhibition and induction of CYP4F enzymes blocked and stimulated, respectively, the formation of the downstream metabolites. Consequently, CYP4F enzymes might be novel therapeutic targets for the treatment of HSAN1 and DSN, as well as for the prevention of T2D.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Diabetic Neuropathies/metabolism , Hereditary Sensory and Autonomic Neuropathies/metabolism , Sphingolipids/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Diabetic Neuropathies/genetics , Diabetic Neuropathies/pathology , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Metabolic Networks and Pathways/genetics , Mice , Mutation , Oxidation-Reduction , Serine C-Palmitoyltransferase/metabolism
15.
FASEB J ; 30(12): 4289-4300, 2016 12.
Article in English | MEDLINE | ID: mdl-27645259

ABSTRACT

ORMDL proteins are believed to be negative regulators of serine palmitoyltransferase (SPT), which catalyzes the first and rate limiting step in sphingolipid (SL) de novo synthesis. Several single-nucleotide polymorphisms (SNPs) that are close to the ORMDL3 locus have been reported to increase ORMDL3 expression and to be associated with an elevated risk for early childhood asthma; however, the direct effect of ORMDL3 expression on SPT activity and its link to asthma remains elusive. In this study, we investigated whether ORMDL3 expression is associated with changes in SPT activity and total SL levels. Ormdl3-knockout (Ormdl3-/-) and transgenic (Ormdl3Tg/wt) mice were generated to study the effect of ORMDL3 on total SL levels in plasma and tissues. Cellular SPT activity was measured in mouse embryonic fibroblasts from Ormdl3-/- mice, as well as in HEK293 cells in which ORMDL3 was overexpressed and silenced. Furthermore, we analyzed the association of the reported ORMDL3 asthma SNPs with plasma sphingoid bases in a population-based cohort of 971 individuals. Total C18-long chain bases were not significantly altered in the plasma and tissues of Ormdl3-/- mice, whereas C18-sphinganine showed a small and significant increase in plasma, lung, and liver tissues. Mouse embryonic fibroblast cells from Ormdl3-/- mice did not show an altered SPT activity compared with Ormdl3+/- and Ormdl3+/+ mice. Overexpression or knockdown of ORMDL3 in HEK293 cells did not alter SPT activity; however, parallel knockdown of all 3 ORMDL isoforms increased enzyme activity significantly. A significant association of the annotated ORMDL3 asthma SNPs with plasma long-chain sphingoid base levels could not be confirmed. ORMDL3 expression levels seem not to be directly associated with changes in SPT activity. ORMDL3 might influence de novo sphingolipid metabolism downstream of SPT.-Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P., Ernst, D., von Eckardstein, A., Lambrecht, B. N., Janssens, S., Hornemann, T. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase.


Subject(s)
Lipid Metabolism/physiology , Membrane Proteins/metabolism , Protein Isoforms/metabolism , Serine C-Palmitoyltransferase/metabolism , Animals , Asthma/metabolism , HEK293 Cells , Humans , Lung/metabolism , Membrane Proteins/genetics , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Sphingolipids/blood
16.
Hum Mol Genet ; 25(5): 853-65, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26681808

ABSTRACT

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare autosomal dominant inherited peripheral neuropathy caused by mutations in the SPTLC1 and SPTLC2 subunits of serine palmitoyltransferase (SPT). The mutations induce a permanent shift in the substrate preference from L-serine to L-alanine, which results in the pathological formation of atypical and neurotoxic 1-deoxy-sphingolipids (1-deoxySL). Here we compared the enzymatic properties of 11 SPTLC1 and six SPTLC2 mutants using a uniform isotope labelling approach. In total, eight SPT mutants (STPLC1p.C133W, p.C133Y, p.S331F, p.S331Y and SPTLC2p.A182P, p.G382V, p.S384F, p.I504F) were associated with increased 1-deoxySL synthesis. Despite earlier reports, canonical activity with l-serine was not reduced in any of the investigated SPT mutants. Three variants (SPTLC1p.S331F/Y and SPTLC2p.I505Y) showed an increased canonical activity and increased formation of C20 sphingoid bases. These three mutations are associated with an exceptionally severe HSAN1 phenotype, and increased C20 sphingosine levels were also confirmed in plasma of patients. A principal component analysis of the analysed sphingoid bases clustered the mutations into three separate entities. Each cluster was related to a distinct clinical outcome (no, mild and severe HSAN1 phenotype). A homology model based on the protein structure of the prokaryotic SPT recapitulated the same grouping on a structural level. Mutations associated with the mild form clustered around the active site, whereas mutations associated with the severe form were located on the surface of the protein. In conclusion, we showed that HSAN1 mutations in SPT have distinct biochemical properties, which allowed for the prediction of the clinical symptoms on the basis of the plasma sphingoid base profile.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies/genetics , Mutation , Serine C-Palmitoyltransferase/genetics , Adult , Aged , Alanine/chemistry , Alanine/metabolism , Catalytic Domain , Child , Gas Chromatography-Mass Spectrometry , Gene Expression , HEK293 Cells , Hereditary Sensory and Autonomic Neuropathies/enzymology , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Isotope Labeling , Middle Aged , Models, Molecular , Phenotype , Principal Component Analysis , Recombinant Proteins/blood , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Serine/chemistry , Serine/metabolism , Serine C-Palmitoyltransferase/blood , Serine C-Palmitoyltransferase/chemistry , Severity of Illness Index , Sphingolipids/blood , Structural Homology, Protein , Structure-Activity Relationship , Young Adult
17.
J Clin Lipidol ; 9(4): 568-75, 2015.
Article in English | MEDLINE | ID: mdl-26228675

ABSTRACT

BACKGROUND: The condensation of palmitoyl-CoA and L-Serine is the first step in the de novo formation of sphingolipids and catalyzed by the serine-palmitoyltransferase (SPT). Besides other acyl-CoAs the SPT can also metabolize L-alanine and glycine, which forms an atypical category of neurotoxic 1-deoxy-sphingolipids (1-deoxySL). Several mutations in SPT are associated with pathologically increased 1-deoxySL levels, which cause the inherited sensory neuropathy HSAN1. 1-DeoxySL levels are also elevated in individuals with the metabolic syndrome and diabetes mellitus type II and seem to be involved in the pathology of the diabetic neuropathy. OBJECTIVE: In previous studies, we observed a strong correlation between plasma 1-deoxySLs and triglycerides (TGs). We were therefore interested whether lowering plasma TG levels also affects plasma sphingolipid and in particular, 1-deoxySL levels. METHODS: Sixty-six patients with dyslipidemia were treated for 6 wk with the TG-lowering drug fenofibrate (160 mg/d) or extended-release niacin (0.5 g/d for 3 wk, then 1 g/d) with 4 wk of washout between treatments. The sphingoid base profile was analyzed by liquid chromatography-mass spectrometry (LC-MS) before and after each treatment block. RESULTS: Fenofibrate significantly lowered 1-deoxySLs and other atypical sphingoid bases (P < .001) but had no effect on the typical sphingolipids. In contrast, extended-release niacin had no effect on 1-deoxySL levels although both treatments lowered plasma TG levels. CONCLUSIONS: The lowering of plasma 1-deoxySL levels by fenofibrate in dyslipidemic patients might be a novel therapeutic approach in the prevention and treatment of diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/drug therapy , Fenofibrate/administration & dosage , Hereditary Sensory and Autonomic Neuropathies/drug therapy , Sphingolipids/blood , Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/blood , Diabetic Neuropathies/pathology , Female , Hereditary Sensory and Autonomic Neuropathies/blood , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Male , Middle Aged , Mutation , Niacin/administration & dosage , Triglycerides/blood
18.
FASEB J ; 29(11): 4461-72, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26198449

ABSTRACT

Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P < 0.05). We also tested whether there is an association between peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P < 0.05), with the strongest association being with motor neuropathy (P < 0.001). Our data from cells and from patients with breast cancer suggest that 1-deoxysphingolipids, the very-long-chain in particular, play a role as molecular intermediates of paclitaxel-induced peripheral neuropathy.


Subject(s)
Breast Neoplasms , Neurotoxins/blood , Paclitaxel/adverse effects , Peripheral Nervous System Diseases , Sphingolipids/blood , Adolescent , Adult , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , HEK293 Cells , Humans , Middle Aged , Paclitaxel/administration & dosage , Peripheral Nervous System Diseases/blood , Peripheral Nervous System Diseases/chemically induced
19.
Diabetes ; 64(3): 1035-45, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25277395

ABSTRACT

1-Deoxysphingolipids (1-deoxySLs) are atypical neurotoxic sphingolipids that are formed by the serine-palmitoyltransferase (SPT). Pathologically elevated 1-deoxySL concentrations cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), an axonal neuropathy associated with several missense mutations in SPT. Oral L-serine supplementation suppressed the formation of 1-deoxySLs in patients with HSAN1 and preserved nerve function in an HSAN1 mouse model. Because 1-deoxySLs also are elevated in patients with type 2 diabetes mellitus, L-serine supplementation could also be a therapeutic option for diabetic neuropathy (DN). This was tested in diabetic STZ rats in a preventive and therapeutic treatment scheme. Diabetic rats showed significantly increased plasma 1-deoxySL concentrations, and L-serine supplementation lowered 1-deoxySL concentrations in both treatment schemes (P < 0.0001). L-serine had no significant effect on hyperglycemia, body weight, or food intake. Mechanical sensitivity was significantly improved in the preventive (P < 0.01) and therapeutic schemes (P < 0.001). Nerve conduction velocity (NCV) significantly improved in only the preventive group (P < 0.05). Overall NCV showed a highly significant (P = 5.2E-12) inverse correlation with plasma 1-deoxySL concentrations. In summary, our data support the hypothesis that 1-deoxySLs are involved in the pathology of DN and that an oral L-serine supplementation could be a novel therapeutic option for treating DN.


Subject(s)
Diabetic Neuropathies/blood , Sphingosine/analogs & derivatives , Animals , Body Weight/drug effects , Diabetic Neuropathies/drug therapy , Eating/drug effects , Electrophysiology , Hereditary Sensory and Autonomic Neuropathies/blood , Hereditary Sensory and Autonomic Neuropathies/drug therapy , Male , Rats , Rats, Sprague-Dawley , Serine/therapeutic use , Sphingosine/blood
20.
Lipids Health Dis ; 13: 161, 2014 Oct 11.
Article in English | MEDLINE | ID: mdl-25305670

ABSTRACT

BACKGROUND: Sphingolipids are increasingly recognized to play a role in insulin resistance and diabetes. Recently we reported significant elevations of 1-deoxysphingolipids (1-deoxySL) - an atypical class of sphingolipids in patients with metabolic syndrome (MetS) and diabetes type 2 (T2DM). It is unknown whether 1-deoxySL in patients with diabetes type 1 (T1DM) are similarly elevated. FINDINGS: We analyzed the long chain base profile by LC-MS after hydrolyzing the N-acyl and O-linked headgroups in plasma from individuals with T1DM (N = 27), T2DM (N = 30) and healthy controls (N = 23). 1-deoxySLs were significantly higher in the groups with T2DM but not different between T1DM and controls. In contrast to patients with T2DM, 1-deoxSL levels are not elevated in T1DM. CONCLUSIONS: Our study indicates that the 1-deoxySL formation is not per-se caused by hyperglycemia but rather specifically associated with metabolic changes in T2DM, such as elevated triglyceride levels.


Subject(s)
Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Sphingosine/analogs & derivatives , Adult , Aged , Case-Control Studies , Female , Humans , Lipids , Male , Middle Aged , Sphingolipids/blood , Sphingosine/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...