Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Physiol ; 595(4): 1077-1092, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27739590

ABSTRACT

KEY POINTS: Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. ABSTRACT: In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal-to-placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS-dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR-derived ECs had a decreased DNA methylation (∼30%) at CpG -170 (from the transcription start site) and this epigenetic signature was absent in NAC-treated fetuses (P < 0.001). These data show that IUGR-ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cellular Reprogramming , Endothelial Cells/metabolism , Epigenesis, Genetic , Fetal Growth Retardation/metabolism , Acetylcysteine/therapeutic use , Animals , Antioxidants/therapeutic use , Cells, Cultured , DNA Methylation , Endothelial Cells/cytology , Endothelial Cells/drug effects , Female , Fetal Growth Retardation/drug therapy , Guinea Pigs , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Promoter Regions, Genetic , Umbilical Arteries/drug effects , Umbilical Arteries/metabolism , Umbilical Arteries/pathology
2.
J Physiol ; 594(6): 1553-61, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26719023

ABSTRACT

Intra-uterine growth restriction (IUGR) is associated with short and long-term metabolic and cardiovascular alterations. Mice and rats have been extensively used to study the effects of IUGR, but there are notable differences in fetal and placental physiology relative to those of humans that argue for alternative animal models. This study proposes that gradual occlusion of uterine arteries from mid-gestation in pregnant guinea pigs produces a novel model to better assess human IUGR. Fetal biometry and in vivo placental vascular function were followed by sonography and Doppler of control pregnant guinea pigs and sows submitted to surgical placement of ameroid constrictors in both uterine arteries (IUGR) at mid-gestation (35 days). The ameroid constrictors induced a reduction in the fetal abdominal circumference growth rate (0.205 cm day(-1) ) compared to control (0.241 cm day(-1) , P < 0.001) without affecting biparietal diameter growth. Umbilical artery pulsatility and resistance indexes at 10 and 20 days after surgery were significantly higher in IUGR animals than controls (P < 0.01). These effects were associated with a decrease in the relative luminal area of placental chorionic arteries (21.3 ± 2.2% vs. 33.2 ± 2.7%, P < 0.01) in IUGR sows at near term. Uterine artery intervention reduced fetal (∼30%), placental (∼20%) and liver (∼50%) weights (P < 0.05), with an increased brain to liver ratio (P < 0.001) relative to the control group. These data demonstrate that the ameroid constrictor implantations in uterine arteries in pregnant guinea pigs lead to placental vascular dysfunction and altered fetal growth that induces asymmetric IUGR.


Subject(s)
Fetal Growth Retardation/physiopathology , Placental Circulation , Uterine Artery Embolization/methods , Uterine Artery/surgery , Animals , Disease Models, Animal , Female , Fetal Growth Retardation/etiology , Guinea Pigs , Pregnancy , Uterine Artery/pathology , Uterine Artery Embolization/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL