Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 100: 103366, 2019 12.
Article in English | MEDLINE | ID: mdl-31422314

ABSTRACT

This study evaluated the MMP inhibition of the zinc oxide and copper nanoparticles (ZnO/CuNp), and the effects of their addition into adhesives on antimicrobial activity (AMA), ultimate tensile strength (UTS), in vitro degree of conversion (in vitro-DC), as well as, resin-dentin bond strength (µTBS), nanoleakage (NL) and in situ-DC on caries-affected dentin. Anti-MMP activity was evaluated for several MMPs. ZnO/CuNp (0% [control]; 5/0.1 and 5/0.2 wt%) were added into Prime&Bond Active (PBA) and Ambar Universal (AMB). The AMA was evaluated against Streptococcus mutans. UTS were tested after 24 h and 28d. After induced caries, adhesives and composite were applied to flat dentin surfaces, and specimens were sectioned to obtain resin-dentin sticks. µTBS, NL, in vitro-DC and in situ-DC were evaluated after 24 h. ANOVA and Tukey's test were applied (α = 0.05). ZnO/CuNp demonstrated anti-MMP activity (p < 0.05). The addition of ZnO/CuNp increased AMA and UTS (AMB; p < 0.05). UTS for PBA, in vitro-DC, in situ-DC and µTBS for both adhesives were maintained with ZnO/CuNp (p > 0.05). However, lower NL was observed for ZnO/CuNp groups (p < 0.05). The addition of ZnO/CuNp in adhesives may be an alternative to provide antimicrobial, anti-MMP activities and improves the integrity of the hybrid layer on caries-affected dentin.


Subject(s)
Copper/chemistry , Dental Bonding/instrumentation , Dental Caries , Dentin/chemistry , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Acid Etching, Dental , Adhesives , Adolescent , Adult , Anti-Infective Agents/pharmacology , Composite Resins/chemistry , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , Humans , Materials Testing , Matrix Metalloproteinases/metabolism , Nanoparticles , Resin Cements/chemistry , Streptococcus mutans/drug effects , Stress, Mechanical , Surface Properties , Tensile Strength , Young Adult
2.
J Dent ; 82: 45-55, 2019 03.
Article in English | MEDLINE | ID: mdl-30738850

ABSTRACT

OBJECTIVES: To evaluate the effect of addition of zinc oxide and copper nanoparticles (ZnO/CuNp) into universal adhesives, on antimicrobial activity (AMA), cytotoxicity (CTX), water sorption (WS) and solubility (SO), microhardness (MH) and in vitro degree of conversion (DC), as well as resin-dentin microtensile bond strength (µTBS), nanoleakage (NL) and in situ DC. METHODS: ZnO/CuNp (0% [control]; 5/0.1 and 5/0.2 wt%) were added in Prime&Bond Active (PBA) and Ambar Universal (AMB). The AMA was evaluated against Streptococcus mutans. For CTX, Saos-2 cell-line was used. For WS and SO, specimens were tested for 28d. For MH, specimens were tested after 24 h and 28d and for in vitro DC, specimens were evaluated after 24 h. After, the adhesives were applied to flat dentine surfaces, composite resin build-ups, specimens were sectioned to obtain resin-dentine sticks. It was evaluated in µTBS, NL and in situ DC after 24 h of water storage. ANOVA and Tukey's test were applied (α = 0.05). RESULTS: The addition of 5/0.2 ZnO/CuNp increase AMA and WS, but decrease the SO when compared to control (p < 0.05). The CTX and µTBS were maintaining with adhesive-containing ZnO/CuNp (p > 0.05). MH, in vitro DC and in situ DC was significant increase (AMB) or maintaining (PBA) with ZnO/CuNp addition. However, significantly lower NL was observed for ZnO/CuNp groups (p < 0.05). CONCLUSIONS: The addition of ZnO/CuNp in the tested concentrations in universal adhesive systems may be an alternative to provide antimicrobial activity and improves the integrity of the hybrid layer, without jeopardizing biological, adhesives and mechanical properties. SIGNIFICANCE: This is the first study that demonstrates that the addition of zinc oxide and copper nanoparticles in concentrations up to 5/0.2 wt% in two universal adhesive systems is a feasible approach and may be an alternative to adhesive interfaces with antimicrobial properties and less defects in the resin-dentin interface.


Subject(s)
Copper , Dental Bonding , Dental Leakage , Dentin-Bonding Agents , Nanoparticles , Zinc , Copper/chemistry , Dental Cements/chemistry , Dentin , Dentin-Bonding Agents/chemistry , Dentin-Bonding Agents/metabolism , Humans , Materials Testing , Nanoparticles/chemistry , Resin Cements , Tensile Strength , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...