Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 221: 891-899, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36100001

ABSTRACT

Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host. The three-dimensional structure of TcNTR, and the molecular and chemical bases of the selective activation of nitro drugs, are still unknown. To understand the role of TcNTR in the basic parasite biology, investigate its potential as a drug target, and contribute to the fight against neglected tropical diseases, a combined approach using multiple biophysical and biochemical methods together with in silico studies was employed in the characterization of TcNTR. For the first time, the interaction of TcNTR with membranes was demonstrated, with a preference for those containing cardiolipin, a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane in eukaryotic cells. Prediction of TcNTR's 3D structure suggests that a 23-residue long insertion (199 to 222), absent in the homologous bacterial protein and identified as conserved in protozoan sequences, mediates enzyme specificity, and is involved in protein-membrane interaction.


Subject(s)
Chagas Disease , Nitroimidazoles , Prodrugs , Trypanocidal Agents , Trypanosoma cruzi , Humans , Nitroimidazoles/metabolism , Nitroimidazoles/therapeutic use , Nifurtimox/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Nitroreductases/chemistry , Prodrugs/therapeutic use , Trypanocidal Agents/chemistry
2.
FEBS J ; 288(3): 930-944, 2021 02.
Article in English | MEDLINE | ID: mdl-32428996

ABSTRACT

Schistosomiasis is a serious public health problem, prevalent in tropical and subtropical areas, especially in poor communities without access to safe drinking water and adequate sanitation. Transmission has been reported in 78 countries, and its control depends on a single drug, praziquantel, which has been used over the past 30 years. Our work is focused on exploiting target-based drug discovery strategies to develop new therapeutics to treat schistosomiasis. In particular, we are interested in evaluating the enzyme dihydroorotate dehydrogenase (DHODH) as a drug target. DHODH is a flavoenzyme that catalyzes the stereospecific oxidation of (S)-dihydroorotate (DHO) to orotate during the fourth and only redox step of the de novo pyrimidine nucleotide biosynthetic pathway. Previously, we identified atovaquone, used in the treatment of malaria, and its analogues, as potent and selective inhibitors against Schistosoma mansoni DHODH (SmDHODH). In the present article, we report the first crystal structure of SmDHODH in complex with the atovaquone analogue inhibitor 2-((4-fluorophenyl)amino)-3-hydroxynaphthalene-1,4-dione (QLA). We discuss three major findings: (a) the open conformation of the active site loop and the unveiling of a novel transient druggable pocket for class 2 DHODHs; (b) the presence of a protuberant domain, only present in Schistosoma spp DHODHs, that was found to control and modulate the dynamics of the inhibitor binding site; (c) a detailed description of an unexpected binding mode for the atovaquone analogue to SmDHODH. Our findings contribute to the understanding of the catalytic mechanism performed by class 2 DHODHs and provide the molecular basis for structure-guided design of SmDHODH inhibitors. DATABASE: The structural data are available in Protein Data Bank (PDB) database under the accession code number 6UY4.


Subject(s)
Enzyme Inhibitors/pharmacology , Helminth Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Schistosoma mansoni/enzymology , Schistosomiasis mansoni/prevention & control , Amino Acid Sequence , Animals , Atovaquone/analogs & derivatives , Atovaquone/pharmacology , Biocatalysis/drug effects , Catalytic Domain , Circular Dichroism , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Helminth Proteins/chemistry , Helminth Proteins/genetics , Humans , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/genetics , Protein Conformation , Schistosoma mansoni/drug effects , Schistosoma mansoni/genetics , Schistosomiasis mansoni/parasitology , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...