Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34574280

ABSTRACT

The main cause of flesh browning in 'Rojo Brillante' persimmon fruit is mechanical damage caused during harvesting and packing. Innovation and research on nondestructive techniques to detect this phenomenon in the packing lines are necessary because this type of alteration is often only seen when the final consumer peels the fruit. In this work, we have studied the application of hyperspectral imaging in the range of 450-1040 nm to detect mechanical damage without any external symptoms. The fruit was damaged in a controlled manner. Later, images were acquired before and at 0, 1, 2 and 3 days after damage induction. First, the spectral data captured from the images were analysed through an algorithm based on principal component analysis (PCA). The aim was to automatically separate intact and damaged fruit, and to detect the damage in the PC images when present. With this algorithm, 90.0% of intact fruit and 90.8% of damaged fruit were correctly detected. A model based on partial least squares-discriminant analysis (PLS-DA), was later calibrated using the mean spectrum of the pixels detected as damaged, to determine the moment when the fruit was damaged. The model differentiated fruit corresponding correctly to 0, 1, 2 and 3 days after damage induction, achieving a total accuracy of 99.4%.

2.
Food Chem ; 343: 128517, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33199118

ABSTRACT

Pasta is mostly composed by wheat flour and water. Nevertheless, flour can be partially replaced by fibers to provide extra nutrients in the diet. However, fiber can affect the technological quality of pasta if not properly distributed. Usually, determinations of parameters in pasta are destructive and time-consuming. The use of Near Infrared-Hyperspectral Imaging (NIR-HSI), together with machine learning methods, is valuable to improve the efficiency in the assessment of pasta quality. This work aimed to investigate the ability of NIR-HSI and augmented Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) for the evaluation, resolution and quantification of fiber distribution in enriched pasta. Results showed R2V between 0.28 and 0.89, %LOF < 6%, variance explained over 99%, and similarity between pure and recovered spectra over 96% and 98% in models using pure flour and control as initial estimates, respectively, demonstrating the applicability of NIR-HSI and MCR-ALS in the identification of fiber in pasta.


Subject(s)
Dietary Fiber/analysis , Food Analysis/methods , Food Analysis/statistics & numerical data , Hyperspectral Imaging/methods , Flour/analysis , Hyperspectral Imaging/statistics & numerical data , Least-Squares Analysis , Spectroscopy, Near-Infrared/methods , Triticum , Water
3.
Adv Biochem Eng Biotechnol ; 161: 71-91, 2017.
Article in English | MEDLINE | ID: mdl-28289768

ABSTRACT

Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.


Subject(s)
Food Analysis/methods , Fruit/classification , Machine Learning , Photography/methods , Vegetables/classification , Food Analysis/standards , Food Technology/methods , Food Technology/standards , Fruit/anatomy & histology , Pattern Recognition, Automated/methods , Quality Control , Vegetables/anatomy & histology
4.
J Sci Food Agric ; 96(13): 4575-83, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26910811

ABSTRACT

BACKGROUND: Grapevine cluster morphology influences the quality and commercial value of wine and table grapes. It is routinely evaluated by subjective and inaccurate methods that do not meet the requirements set by the food industry. Novel two-dimensional (2D) and three-dimensional (3D) machine vision technologies emerge as promising tools for its automatic and fast evaluation. RESULTS: The automatic evaluation of cluster length, width and elongation was successfully achieved by the analysis of 2D images, significant and strong correlations with the manual methods being found (r = 0.959, 0.861 and 0.852, respectively). The classification of clusters according to their shape can be achieved by evaluating their conicity in different sections of the cluster. The geometric reconstruction of the morphological volume of the cluster from 2D features worked better than the direct 3D laser scanning system, showing a high correlation (r = 0.956) with the manual approach (water displacement method). In addition, we constructed and validated a simple linear regression model for cluster compactness estimation. It showed a high predictive capacity for both the training and validation subsets of clusters (R(2) = 84.5 and 71.1%, respectively). CONCLUSION: The methodologies proposed in this work provide continuous and accurate data for the fast and objective characterisation of cluster morphology. © 2016 Society of Chemical Industry.


Subject(s)
Crops, Agricultural/growth & development , Food Inspection/methods , Food Quality , Fruit/growth & development , Plant Stems/growth & development , Vitis/growth & development , Algorithms , Artificial Intelligence , Crops, Agricultural/classification , Flowering Tops/classification , Flowering Tops/growth & development , Fruit/classification , Humans , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Linear Models , Photography , Plant Stems/classification , Spain , Species Specificity , Vitis/classification
5.
J Sci Food Agric ; 95(6): 1274-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25041796

ABSTRACT

BACKGROUND: Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way. RESULTS: Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R(2) between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%. CONCLUSION: The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods.


Subject(s)
Biomass , Fruit/growth & development , Models, Biological , Vitis/growth & development , Wine , Algorithms , Cluster Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...