Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pestic Sci ; 43(1): 1-9, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-30363124

ABSTRACT

Millions of cases of pesticide intoxication occur yearly and represent a public health problem. In addition, pesticide poisoning is the preferred suicidal method in rural areas. The use of enzymes for the treatment of intoxication due to organophosphorus pesticides was proposed decades ago. Several enzymes are able to transform organophosphorus compounds such as pesticides and nerve agents. Some specific enzymatic treatments have been proposed, including direct enzyme injection, liposome and erythrocytes carriers, PEGylated preparations and extracorporeal enzymatic treatments. Nevertheless, no enzymatic treatments are currently available. In this work, the use of enzymes for treating of organophosphorus pesticide intoxication is critically reviewed and the remaining challenges are discussed.

2.
Int J Biol Macromol ; 105(Pt 1): 163-170, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28690168

ABSTRACT

Pesticide intoxication is a major public health concern, and unfortunately there is not an effective treatment for severe organophosphorus pesticide intoxication. In this work, a non-immunogenic enzymatic bioconjugate based on cytochrome P450 was assayed for organophosphorus pesticide transformation. Enzyme therapy is an alternative approach to inactivate pesticides in the bloodstream, transforming them into less toxic metabolites. A variant of cytochrome P450 (CYPBM3 F87A) from Bacillus megaterium was chemically modified with polyethylene glycol. The PEGylated enzyme showed enhanced pesticide transformation activity when compared with the unmodified protein. The transformation rates were higher than those obtained with the unmodified enzyme for all six pesticides transformed. The specific activity of PEGylated preparation for parathion and dichlorophen was up to 9-times higher than these obtained with the unmodified enzyme. In addition, the modified CYP (CYP-PEG) remained active at extremely high pHs, maintaining 90% of its maximal activity at pH 11, as opposed to the unmodified CYP that retained less than 20% of its maximal activity at that pH. In addition, the bioconjugate showed good catalytic activity in blood serum and innocuousness on immune cells. The potential use of PEGylated CYP as a detoxification strategy for pesticide poisoning is demonstrated and discussed.


Subject(s)
Biocatalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Pesticides/metabolism , Polyethylene Glycols/chemistry , Animals , Bacillus megaterium/enzymology , Biotransformation , Hydrogen-Ion Concentration , Kinetics , Macrophages/metabolism , Mice , Models, Molecular , Oxidation-Reduction , Protein Conformation , RAW 264.7 Cells , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...