Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(50): 27493-27499, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38059304

ABSTRACT

Ultrasmall Pd4 clusters form in the micropores of FER zeolite during low-temperature treatment (100 °C) in the presence of humid CO gas. They effectively catalyze CO oxidation below 100 °C, whereas Pd nanoparticles are not active as they are poisoned by CO. Using catalytic measurements, infrared (IR) spectroscopy, X-ray absorption spectroscopy (EXAFS), microscopy, and density functional theory calculations, we provide the molecular-level insight into this previously unreported phenomenon. Pd nanoparticles get covered with CO at low temperatures, which effectively blocks O2 activation until CO desorption occurs. Small Pd clusters in zeolites, in contrast, demonstrate fluxional behavior in the presence of CO, which significantly increases the affinity for binding O2. Our study provides a pathway to achieve low-temperature CO oxidation activity on the basis of a well-defined Pd/zeolite system.

2.
Molecules ; 28(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36838945

ABSTRACT

Pd-based catalysts are widely used in the oxidation of CH4 and have a significant impact on global warming. However, understanding their active sites remains controversial, because interconversion between Pd and PdO occurs consecutively during the reaction. Understanding the intrinsic active sites under reaction conditions is critical for developing highly active and selective catalysts. In this study, we demonstrated that partially oxidized palladium (PdOx) on the surface plays an important role for CH4 oxidation. Regardless of whether the initial state of Pd corresponds to oxides or metallic clusters, the topmost surface is PdOx, which is formed during CH4 oxidation. A quantitative analysis using CO titration, diffuse reflectance infrared Fourier-transform spectroscopy, X-ray diffraction, and scanning transmission electron microscopy demonstrated that a surface PdO layer was formed on top of the metallic Pd clusters during the CH4 oxidation reaction. Furthermore, the time-on-stream test of CH4 oxidation revealed that the presence of the PdO layer on top of the metallic Pd clusters improves the catalytic activity. Our periodic density functional theory (DFT) calculations with a PdOx slab and nanoparticle models aided the elucidation of the structure of the experimental PdO particles, as well as the experimental C-O bands. The DFT results also revealed the formation of a PdO layer on the metallic Pd clusters. This study helps achieve a fundamental understanding of the active sites of Pd and PdO for CH4 oxidation and provides insights into the development of active and durable Pd-based catalysts through molecular-level design.


Subject(s)
Oxides , Palladium , Catalytic Domain , Oxidation-Reduction , Palladium/chemistry
3.
J Phys Chem Lett ; 14(6): 1564-1569, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36745575

ABSTRACT

To design efficient CO2 capture materials, it is necessary to ensure a high adsorption capacity. We recently reported that one Na+ site in NaY zeolite can attach two CO2 molecules. However, the process is not suitable for practical use because it proceeds at a low temperature. Here, we present results on CO2 adsorption on CaNaY zeolites, demonstrating that one Ca2+ site can attach three CO2 molecules. The ν3(13CO2) mode arising from the natural 13C abundance allows for easy infrared monitoring of the processes: it appears at 2298, 2294, and 2291 cm-1 for the complexes with one, two, and three CO2 ligands, respectively. The 12CO2 molecules in the polyligand complexes interact vibrationally, leading to the split of the ν3(12CO2) modes. At ambient temperature, Ca2+(CO2)2 complexes predominate at >1 mbar CO2 and triligand species begin to form at 65 mbar. The obtained results show that CaY zeolites can be very effective CO2 capture materials.

4.
J Am Chem Soc ; 145(9): 5029-5040, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36812067

ABSTRACT

Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only ∼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.

5.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364063

ABSTRACT

In the present study, the reaction conditions for homodimerization process of 3-acetylcoumarin were achieved under sonication using combination of zinc and metallic salt (ZnCl2 or Zn(OAc)2). Appropriate frequency and sound amplitude have been identified as significant variables for the initiation of the reaction. On the base of first principal calculations and experimental results, the mechanism of the reaction was investigated. The relative stability of the possible intermediates has been compared, including evaluation on the ionic and radical reaction pathways for the dimerization process. Theoretical results suggested that the radical mechanism is more favorable. The C-C bond formation between the calculated radical intermediates occurs spontaneously (∆G = -214 kJ/mol for ZnCl2, -163 kJ/mol in the case of Zn(OAc)2), which proves the possibility for the homodimerization of 3-acetylcoumarin via formation of radical species. Both experimental and theoretical data clarified the activation role of the solvent on the reactivity of the Zn-salt. The formation of complexes of solvent molecules with Zn-atom from the ZnCl2 reduces the energy barrier for the dissociation of Zn-Cl bond and facilitate the formation of the dimeric product.


Subject(s)
Coumarins , Models, Molecular , Dimerization , Solvents
6.
Chem Sci ; 13(35): 10383-10394, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36277641

ABSTRACT

Cu/zeolites efficiently catalyze selective reduction of environmentally harmful nitric oxide with ammonia. Despite over a decade of research, the exact NO reduction steps remain unknown. Herein, using a combined spectroscopic, catalytic and DFT approach, we show that nitrosyl ions (NO+) in zeolitic micropores are the key intermediates for NO reduction. Remarkably, they react with ammonia even below room temperature producing molecular nitrogen (the reaction central to turning the NO pollutant to benign nitrogen) through the intermediacy of the diazo N2H+ cation. Experiments with isotopically labeled N-compounds confirm our proposed reaction path. No copper is required for N2 formation to occur during this step. However, at temperatures below 100 °C, when NO+ reacts with NH3, the bare Brønsted acid site becomes occupied by NH3 to form strongly bound NH4 +, and consequently, this stops the catalytic cycle, because NO+ cannot form on NH4-zeolites when their H+ sites are already occupied by NH4 +. On the other hand, we show that the reaction becomes catalytic on H-zeolites at temperatures when some ammonia desorption can occur (>120 °C). We suggest that the role of Cu(ii) ions in Cu/zeolite catalysts for low-temperature NO reduction is to produce abundant NO+ by the reaction: Cu(ii) + NO → Cu(i)⋯NO+. NO+ then reacts with ammonia to produce nitrogen and water. Furthermore, when Cu(i) gets re-oxidized, the catalytic cycle can then continue. Our findings provide novel understanding of the hitherto unknown steps of the SCR mechanism pertinent to N-N coupling. The observed chemistry of Cu ions in zeolites bears striking resemblance to the copper-containing denitrification and annamox enzymes, which catalyze transformation of NO x species to N2, via di-azo compounds.

7.
Chemistry ; 28(49): e202200684, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35702936

ABSTRACT

Pd-based catalysts are the most widely used for CO oxidation because of their outstanding catalytic activity and thermal stability. However, fundamental understanding of the detailed catalytic processes occurring on Pd-based catalysts under realistic conditions is still lacking. In this study, we investigated CO oxidation on metallic Pd clusters supported on Al2 O3 and SiO2 . High-angle annular dark-field scanning transmission electron microscopy revealed the formation of similar-sized Pd clusters on Al2 O3 and SiO2 . In contrast, CO chemisorption analysis indicated a gradual change in the dispersion of Pd (from 0.79 to 0.2) on Pd/Al2 O3 and a marginal change in the dispersion (from 0.4 to 0.24) on Pd/SiO2 as the Pd loading increased from 0.27 to 5.5 wt %; these changes were attributed to differences in the metal-support interactions. Diffuse reflectance infrared Fourier-transform spectroscopy revealed that fewer a-top CO species were present in Pd supported on Al2 O3 than those in Pd supported on SiO2 , which is related to the morphological differences in the metallic Pd clusters on these two supports. Despite the different dispersion profiles and surface characteristics of Pd, O2 titration demonstrated that linearly bound CO (with an infrared signal at 2090 cm-1 ) reacted first with oxygen in the case of CO-saturated Pd on Al2 O3 and SiO2 , which suggests that a-top CO on the terrace site plays an important role in CO oxidation. The experimental observations were corroborated by periodic density functional calculations, which confirmed that CO oxidation on the (111) terrace sites is most plausible, both kinetically and thermodynamically, compared to that on the edge or corner sites. This study will deepen the fundamental understanding of the effect of Pd clusters on CO oxidation under reaction conditions.

8.
Inorg Chem ; 61(3): 1418-1425, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35015531

ABSTRACT

The preparation of defect-free MFI crystals containing single-site framework Mo through a hydrothermal postsynthesis treatment is reported. The insertion of single Mo sites in the MFI zeolite samples with different crystal sizes of 100, 200, and 2000 nm presenting a diverse concentration of silanol groups is revealed. The nature of the silanols and their role in the incorporation of Mo into the zeolite structure are elucidated through an extensive spectroscopic characterization (29Si NMR, 1H NMR, 31P NMR, and IR) combined with X-ray diffraction and HRTEM. In addition, a DFT-based theoretical modeling of a large Si154O354H92 nanoparticle containing 600 atoms is carried out to understand the expansion of the unit cell volume measured by X-ray diffraction. An accurate quantification of the silanols in the MFI crystals with different particle sizes and the insertion of Mo in the zeolitic framework is reported for the first time. The results confirmed that the non-H-bonded silanols seem to be the gateway for the insertion of single Mo atoms in the zeolite structure. Such materials with single metal sites present high crystallinity and perfect structure, thus providing great stability in catalytic applications.

9.
ACS Catal ; 12(15): 9256-9269, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36718273

ABSTRACT

Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous catalysis, either for its poisoning capability, for the recently attributed promoter role when incorporated in the subsurface, or for the formation of early TM carbides, which are increasingly used in catalysis. Herein, we present a high-throughput systematic study, adjoining thermodynamic plus kinetic evidence obtained by extensive density functional calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), which provides a navigation map of these interactions in a holistic fashion. Correlation between previously proposed electronic descriptors and ad/absorption energies has been tested, with the d-band center being found the most suitable one, although machine learning protocols also underscore the importance of the surface energy and the site coordination number. Descriptors have also been tested for diffusion barriers, with ad/absorption energies and the difference in energy between minima being the most appropriate ones. Furthermore, multivariable, polynomial, and random forest regressions show that both thermodynamic and kinetic data are better described when using a combination of different descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, while combining different ones may be a better path to follow.

10.
Molecules ; 26(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34885878

ABSTRACT

We used computational modeling, based on Density Functional Theory, to help understand the preference for the formation of silanol nests and the substitution of Si by Ti or Al in different crystallographic positions of the MSE-type framework. All these processes were found to be energetically favorable by more than 100 kJ/mol. We suggested an approach for experimental identification of the T atom position in Ti-MCM-68 zeolite via simulation of infrared spectra of pyridine and acetonitrile adsorption at Ti. The modeling of adsorption of hydrogen peroxide at Ti center in the framework has shown that the molecular adsorption was preferred over the dissociative adsorption by 20 to 40 kJ/mol in the presence or absence of neighboring T-atom vacancy, respectively.

11.
Angew Chem Int Ed Engl ; 60(51): 26702-26709, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34647387

ABSTRACT

Zeolite Y and its ultra-stabilized hierarchical derivative (USY) are the most widely used zeolite-based heterogeneous catalysts in oil refining, petrochemisty, and other chemicals manufacturing. After almost 60 years of academic and industrial research, their resilience is unique as no other catalyst displaced them from key processes such as FCC and hydrocracking. The present study highlights the key difference leading to the exceptional catalytic performance of USY versus the parent zeolite Y in a multi-technique study combining advanced spectroscopies (IR and solid-state NMR) and molecular modeling. The results highlight a hitherto unreported proton transfer involving inaccessible active sites in sodalite cages that contributes to the exceptional catalytic performance of USY.

12.
Nat Commun ; 12(1): 6033, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654809

ABSTRACT

CO oxidation is of importance both for inorganic and living systems. Transition and precious metals supported on various materials can oxidize CO to CO2. Among them, few systems, such as Au/TiO2, can perform CO oxidation at temperatures as low as -70 °C. Living (an)aerobic organisms perform CO oxidation with nitrate using complex enzymes under ambient temperatures representing an essential pathway for life, which enables respiration in the absence of oxygen and leads to carbonate mineral formation. Herein, we report that CO can be oxidized to CO2 by nitrate at -140 °C within an inorganic, nonmetallic zeolitic system. The transformation of NOx and CO species in zeolite as well as the origin of this unique activity is clarified using a joint spectroscopic and computational approach.

13.
J Chem Phys ; 154(18): 184706, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34241012

ABSTRACT

Rh(C2H4)2 species grafted on the HY zeolite framework significantly enhance the activation of H2 that reacts with C2H4 ligands to form C2H6. While in this case, the simultaneous activation of C2H4 and H2 and the reaction between these species on zeolite-loaded Rh cations is a legitimate hydrogenation pathway yielding C2H6, the results obtained for Rh(CO)(C2H4)/HY materials exposed to H2 convincingly show that the support-assisted C2H4 hydrogenation pathway also exists. This additional and previously unrecognized hydrogenation pathway couples with the conversion of C2H4 ligands on Rh sites and contributes significantly to the overall hydrogenation activity. This pathway does not require simultaneous activation of reactants on the same metal center and, therefore, is mechanistically different from hydrogenation chemistry exhibited by molecular organometallic complexes. We also demonstrate that the conversion of zeolite-supported Rh(CO)2 complexes into Rh(CO)(C2H4) species under ambient conditions is not a simple CO/C2H4 ligand exchange reaction on Rh sites, as this process also involves the conversion of C2H4 into C4 hydrocarbons, among which 1,3-butadiene is the main product formed with the initial selectivity exceeding 98% and the turnover frequency of 8.9 × 10-3 s-1. Thus, the primary role of zeolite-supported Rh species is not limited to the activation of H2, as these species significantly accelerate the formation of the C4 hydrocarbons from C2H4 even without the presence of H2 in the feed. Using periodic density functional theory calculations, we examined several catalytic pathways that can lead to the conversion of C2H4 into 1,3-butadiene over these materials and identified the reaction route via intermediate formation of rhodacyclopentane.

14.
Phys Chem Chem Phys ; 22(45): 26568-26582, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33201159

ABSTRACT

Structural properties and reducibility of zirconium-doped cerium dioxide systems were studied using periodic plane-wave calculations based on density functional theory. A systematic analysis of the results for nanoparticles of two sizes, Ce40-nZrnO80 ∼ 1.5 nm large and Ce140-nZrnO280 ∼ 2.4 nm large, in comparison with slab model data for Ce1-xZrxO2(111) surface has been performed focusing on specific nanoscale effects. Several loadings of Zr dopants ranging from 0.7 to 50 atomic metal percent have been considered. Subsurface cationic sites of ceria are calculated to be energetically most favourable for doping Zr4+ ions in all models. The system stability with several zirconium ions is defined by the relative stability of the occupied individual Zr4+ positions when only one zirconium ion is present. Data for the Ce70Zr70O280 nanoparticle with an equal number of Ce4+ and Zr4+ cations reveal that atomic orderings of neither separated oxide (Janus-type) particles nor randomly intermixed ones are more stable than the distribution of Zr atoms occupying all cationic positions inside the nanoparticle to minimize the presence of surface zirconium. The basicity of surface oxygen centers in nanoparticles is predicted to be decreased when Zr dopants are located in surface positions. The presence of Zr4+ dopants in CeO2 systems can notably lower the oxygen vacancy formation energy and shows interesting peculiarities at higher Zr loadings. Among them is the higher stability of inner oxygen vacancies in Zr-containing nanoparticles and enhanced oxygen mobility beneficial for application in catalysis and as a solid electrolyte with oxygen ions as charge carriers. Similar to pure ceria, Zr-doped ceria nanoparticles exhibit notably higher reducibility than the corresponding extended systems.

15.
Molecules ; 25(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158297

ABSTRACT

Magnetic iron oxide containing MCM-41 silica (MM) with ~300 nm particle size was developed. The MM material before or after template removal was modified with NH2- or COOH-groups and then grafted with PEG chains. The anticancer drug tamoxifen was loaded into the organic groups' modified and PEGylated nanoparticles by an incipient wetness impregnation procedure. The amount of loaded drug and the release properties depend on whether modification of the nanoparticles was performed before or after the template removal step. The parent and drug-loaded samples were characterized by XRD, N2 physisorption, thermal gravimetric analysis, and ATR FT-IR spectroscopy. ATR FT-IR spectroscopic data and density functional theory (DFT) calculations supported the interaction between the mesoporous silica surface and tamoxifen molecules and pointed out that the drug molecule interacts more strongly with the silicate surface terminated by silanol groups than with the surface modified with carboxyl groups. A sustained tamoxifen release profile was obtained by an in vitro experiment at pH = 7.0 for the PEGylated formulation modified by COOH groups after the template removal. Free drug and formulated tamoxifen samples were further investigated for antiproliferative activity against MCF-7 cells.


Subject(s)
Cell Proliferation/drug effects , Drug Carriers , Ferrosoferric Oxide , Polyethylene Glycols , Silicon Dioxide , Tamoxifen , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Ferrosoferric Oxide/chemistry , Ferrosoferric Oxide/pharmacokinetics , Ferrosoferric Oxide/pharmacology , Humans , MCF-7 Cells , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics , Silicon Dioxide/pharmacology , Spectroscopy, Fourier Transform Infrared , Tamoxifen/chemistry , Tamoxifen/pharmacokinetics , Tamoxifen/pharmacology
16.
Eur J Pharm Biopharm ; 142: 460-472, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31336182

ABSTRACT

ZSM-5/KIT-6 and ZSM-5/SBA-15 nanoparticles were synthesized and further modified by a post-synthesis method with (CH2)3SO3H and (CH2)3NHCO(CH2)2COOH groups to optimize their drug loading and release kinetic profiles. The verapamil cargo drug was loaded by incipient wetness impregnation both on the parent and modified nanoporous supports. Nanocarriers were then coated with a three-layer polymeric shell composed of chitosan-k-carrageenan-chitosan with grafted polysulfobetaine chains. The parent and drug loaded formulations were characterized by powder XRD, N2 physisorption, thermal analysis, AFM, DLS, TEM, ATR-FT-IR and solid state NMR spectroscopies. Loading of verapamil on such nanoporous carriers and their subsequent polymer coating resulted in a prolonged in vitro release of the drug molecules. Quantum-chemical calculations were performed to investigate the strength of the interaction between the specific functional groups of the drug molecule and (CH2)3SO3H and CH2)3NHCO(CH2)2COOH groups of the drug carrier. Furthermore, the ability of the developed nanocomposites to positively modulate the intracellular internalization and thereby augment the antitumor activity of the p-gp substrate drug doxorubicin was investigated in a comparative manner vs. free drug in a panel of MDR positive (HL-60/Dox, HT-29) and MDR negative (HL-60) human cancer cell lines using the Chou-Talalay method.


Subject(s)
Antineoplastic Agents/chemistry , Drug Resistance, Multiple/drug effects , Nanocomposites/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Verapamil/chemistry , Cell Line, Tumor , Chitosan/chemistry , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Compounding/methods , Drug Delivery Systems/methods , HL-60 Cells , HT29 Cells , Humans , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Porosity
17.
ACS Appl Mater Interfaces ; 11(13): 12914-12919, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30859810

ABSTRACT

The assembly of highly hydrophobic nanosized tungsten-containing MFI-type zeolite nanocrystals (W-MFI) in films and further use of the films for selective exhaust gas (CO, CO2, NO, and NO2) detection were investigated by operando IR spectroscopy. Because of the hydrophobic nature and presence of tungsten in the framework, the W-MFI films showed excellent sorption capacity toward all analytes, in comparison to the pure silica (Si-MFI) film. The high sensitivity of the W-MFI film toward low concentration of CO2 and NO2 (1-3 ppm) was demonstrated. In addition, the interactions between the analytes and zeolite films have been studied by quantum chemical calculation modeling of the W centers based on the density functional theory method.

18.
Angew Chem Int Ed Engl ; 58(6): 1744-1748, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30525271

ABSTRACT

Carbon moieties on late transition metals are regarded as poisoning agents in heterogeneous catalysis. Recent studies show the promoting catalytic role of subsurface C atoms in Pd surfaces and their existence in Ni and Pt surfaces. Here energetic and kinetic evidence obtained by accurate simulations on surface and nanoparticle models shows that such subsurface C species are a general issue to consider even in coinage noble-metal systems. Subsurface C is the most stable situation in densely packed (111) surfaces of Cu and Ag, with sinking barriers low enough to be overcome at catalytic working temperatures. Low-coordinated sites at nanoparticle edges and corners further stabilize them, even in Au, with negligible subsurface sinking barriers. The malleability of low-coordinated sites is key in the subsurface C accommodation. The incorporation of C species decreases the electron density of the surrounding metal atoms, thus affecting their chemical and catalytic activity.

19.
Angew Chem Int Ed Engl ; 57(51): 16672-16677, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30328259

ABSTRACT

The majority of harmful atmospheric CO and NOx emissions are from vehicle exhausts. Although there has been success addressing NOx emissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOx emissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra-framework positions of the small-pore chabazite material as a CO and passive NOx adsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition-metal/SSZ-13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtII and PdII . Through spectroscopy and materials testing we show that both CO and NOx can be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl-nitrosyl palladium complex in chabazite micropore.

20.
RSC Adv ; 8(59): 33728-33741, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-36188438

ABSTRACT

Using periodic density functional calculations, we studied the local structure and preferred locations of yttrium cations and oxygen vacancies in Y-doped cerium dioxide. We employed three kinds of models - a slab of the CeO2(111) surface and two ceria nanoparticles of different sizes and shapes. In the slab models, which represent the (111) surface of ceria and the corresponding extended terraces on the facets of its nanoparticles, Y3+ cation dopants were calculated to be preferentially located close to each other. They tend to surround a subsurface oxygen vacancy that forms to maintain the charge balance. Such general behavior was not found for the nanoparticle models, in which structural flexibility and the presence of various low-coordinated surface centers seem to be crucial and suppress most of the trends. Configurations with four Y3+ cations were calculated to be particularly stable when they combined two of the most stable configurations with two Y3+ cations. However, no clear trend was found regarding the preferential spatial distribution of the Y3+ pairs - they can be stable both in isolation and close to each other. In general, doping by yttrium does not notably change the reducibility of ceria systems but selectively facilitates the formation of oxygen vacancies at the ceria surface in comparison with pristine ceria. Yttrium cations also slightly increase the basicity of the nearby oxygen centers with respect to a stoichiometric ceria surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...