Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894444

ABSTRACT

This work describes a sapphire cryo-applicator with the ability to sense tissue freezing depth during cryosurgery by illumination of tissue and analyzing diffuse optical signals in a steady-state regime. The applicator was manufactured by the crystal growth technique and has several spatially resolved internal channels for accommodating optical fibers. The method of reconstructing freezing depth proposed in this work requires one illumination and two detection channels. The analysis of the detected intensities yields the estimation of the time evolution of the effective attenuation coefficient, which is compared with the theoretically calculated values obtained for a number of combinations of tissue parameters. The experimental test of the proposed applicator and approach for freezing depth reconstruction was performed using gelatin-based tissue phantom and rat liver tissue in vivo. It revealed the ability to estimate depth up to 8 mm. The in vivo study confirmed the feasibility of the applicator to sense the freezing depth of living tissues despite the possible diversity of their optical parameters. The results justify the potential of the described design of a sapphire instrument for cryosurgery.


Subject(s)
Aluminum Oxide , Cryosurgery , Freezing , Liver , Phantoms, Imaging , Animals , Cryosurgery/methods , Rats , Liver/surgery , Liver/diagnostic imaging , Aluminum Oxide/chemistry
2.
Biomedicines ; 12(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38672069

ABSTRACT

Glioblastoma (GBM) is a highly aggressive human neoplasm with poor prognosis due to its malignancy and therapy resistance. To evaluate the efficacy of antitumor therapy, cell models are used most widely, but they are not as relevant to human GBMs as tissue models of gliomas, closely corresponding to human GBMs in cell heterogeneity. In this work, we compared three different tissue strains of rat GBM 101.8 (induced by DMBA), GBM 11-9-2, and GBM 14-4-5 (induced by ENU). MATERIALS AND METHODS: We estimated different gene expressions by qPCR-RT and conducted Western blotting and histological and morphometric analysis of three different tissue strains of rat GBM. RESULTS: GBM 101.8 was characterized by the shortest period of tumor growth and the greatest number of necroses and mitoses; overexpression of Abcb1, Sox2, Cdkn2a, Cyclin D, and Trp53; and downregulated expression of Vegfa, Pdgfra, and Pten; as well as a high level of HIF-1α protein content. GBM 11-9-2 and GBM 14-4-5 were relevant to low-grade gliomas and characterized by downregulated Mgmt expression; furthermore, a low content of CD133 protein was found in GBM 11-9-2. CONCLUSIONS: GBM 101.8 is a reliable model for further investigation due to its similarity to high-grade human GBMs, while GBM 11-9-2 and GBM 14-4-5 correspond to Grade 2-3 gliomas.

3.
Biomolecules ; 13(12)2023 11 24.
Article in English | MEDLINE | ID: mdl-38136572

ABSTRACT

Lipid transfer proteins (LTPs) realize their functions in plants due to their ability to bind and transport various ligands. Structures of many LTPs have been studied; however, the mechanism of ligand binding and transport is still not fully understood. In this work, we studied the role of Lys61 and Lys81 located near the "top" and "bottom" entrances to the hydrophobic cavity of the lentil lipid transfer protein Lc-LTP2, respectively, in these processes. Using site-directed mutagenesis, we showed that both amino acid residues played a key role in lipid binding to the protein. In experiments with calcein-loaded liposomes, we demonstrated that both the above-mentioned lysine residues participated in the protein interaction with model membranes. According to data obtained from fluorescent spectroscopy and TNS probe displacement, both amino acid residues are necessary for the ability of the protein to transfer lipids between membranes. Thus, we hypothesized that basic amino acid residues located at opposite entrances to the hydrophobic cavity of the lentil Lc-LTP2 played an important role in initial protein-ligand interaction in solution as well as in protein-membrane docking.


Subject(s)
Lens Plant , Lens Plant/genetics , Ligands , Lysine , Lipids
4.
J Liposome Res ; : 1-12, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37867342

ABSTRACT

Herein, we describe the synthesis of pH-sensitive lipophilic colchicine prodrugs for liposomal bilayer inclusion, as well as preparation and characterization of presumably stealth PEGylated liposomes with above-mentioned prodrugs. These formulations liberate strongly cytotoxic colchicinoid derivatives selectively under slightly acidic tumor-associated conditions, ensuring tumor-targeted delivery of the compounds. The design of the prodrugs is addressed to pH-triggered release of active compounds in the slight acidic media, that corresponds to tumor microenvironment, while keeping sufficient stability of the whole formulation at physiological pH. Correlations between the structure of the conjugates, their hydrolytic stability, colloidal stability, ability of the prodrug retention in the lipid bilayer are described. Several formulations were found promising for further development and in vivo investigations.

5.
J Pharm Biomed Anal ; 235: 115672, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37619291

ABSTRACT

Several publications have recently proposed NMR spectroscopy to evaluate the critical quality attributes (CQA) of pentosan polysulfate sodium (PPS), the active ingredient of Elmiron™ approved to treat interstitial cystitis. PPS is a polymer of sulfated ß(1-4)-d-xylopyranose residues randomly substituted by 4-O-methyl-glucopyranosyluronic acid, containing, beyond the main xylose-2,3-O-disulfate repetitive unit, some minor residues that can be marker of both the starting material and preparation process. In the present study we assigned some previously unknown cross-peaks in 1H-13C HSQC NMR of PPS related to its minor sequences adding additional details to its CQA. Four anomeric cross-peaks related to glucuronate-branched xylose and different sulfation pattern as well as the preceding xyloses were identified. Two minor process-related signals of monosulfated xyloses (unsubstituted in position 2 or 3) were also assigned. The isolation of a disaccharide fraction allowed the assignment of the reducing end xylose-α/ß as well as the preceding xylose residues to be corrected. Additionally, the oversulfation of PPS allowed detection of the reducing end xylose-tri-1,2,3-O-sulfate. The newly identified cross-peaks were integrated into an updated quantitative NMR method. Finally, we demonstrated that an in-depth PPS analysis can be obtained using NMR instruments at medium magnetic fields (500 MHz/600 MHz), commonly available in pharmaceutical industries.


Subject(s)
Monosaccharides , Pentosan Sulfuric Polyester , Xylose , Magnetic Resonance Imaging , Sulfates , Magnetic Resonance Spectroscopy
6.
Membranes (Basel) ; 13(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37504984

ABSTRACT

The secreted phospholipases A2 (sPLA2s) play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity, Alzheimer's disease and even COVID-19. The fact has led to a large-scale search for inhibitors of these enzymes. In total, several dozen promising molecules have been proposed, but not a single one has successfully passed clinical trials. The failures in clinical studies motivated in-depth fundamental studies of PLA2s. Here we review alternative ways to control sPLA2 activity, outside its catalytic site. The concept can be realized by preventing sPLA2 from attaching to the membrane surface; by binding to an external protein which blocks sPLA2 hydrolytic activity; by preventing sPLA2 from orienting properly on the membrane surface; and by preventing substrate binding to the enzyme, keeping the catalytic site unaltered. Evidence in the literature is summarized in the review with the aim to serve as a starting point for new types of sPLA2 inhibitors.

7.
Membranes (Basel) ; 13(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37505047

ABSTRACT

Despite the undisputable role of the protein corona in the biointeractions of liposome drug carriers, the field suffers from a lack of knowledge regarding the patterns of protein deposition on lipid surfaces with different compositions. Here, we investigated the protein coronas formed on liposomes of basic compositions containing combinations of egg phosphatidylcholine (PC), palmitoyloleoyl phosphatidylglycerol (POPG), and cholesterol. Liposome-protein complexes isolated by size-exclusion chromatography were delipidated and analyzed using label-free LC-MS/MS. The addition of the anionic lipid and cholesterol both affected the relative protein abundances (and not the total bound proteins) in the coronas. Highly anionic liposomes, namely those containing 40% POPG, carried corona enriched with cationic proteins (apolipoprotein C1, beta-2-glycoprotein 1, and cathelicidins) and were the least stable in the calcein release assay. Cholesterol improved the liposome stability in the plasma. However, the differences in the corona compositions had little effect on the liposome uptake by endothelial (EA.hy926) and phagocytic cells in the culture (U937) or ex vivo (blood-derived monocytes and neutrophils). The findings emphasize that the effect of protein corona on the performance of the liposomes as drug carriers occurs through compromising particle stability rather than interfering with cellular uptake.

8.
Pharmaceutics ; 15(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37376203

ABSTRACT

Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome-cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells.

9.
Pharmaceutics ; 15(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839889

ABSTRACT

The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs.

10.
Molecules ; 27(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235252

ABSTRACT

We describe azophenylindane based molecular motors (aphin-switches) which have two different rotamers of trans-configuration and four different rotamers of cis-configuration. The behaviors of these motors were investigated both experimentally and computationally. The conversion of aphin-switch does not yield single isomer but a mixture of these. Although the trans to cis conversion leads to the increase of the system entropy some of the cis-rotamers can directly convert to each other while others should convert via trans-configuration. The motion of aphin-switches resembles the work of a mixing machine with indane group serving as a base and phenol group serving as a beater. The aphin-switches presented herein may provide a basis for promising applications in advanced biological systems or particularly in cases where on demand disordering of molecular packing has value, such as lipid bilayers.


Subject(s)
Indans , Lipid Bilayers , Isomerism , Phenols
11.
Toxins (Basel) ; 14(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36287938

ABSTRACT

Secreted phospholipases A2 (sPLA2s) are peripheral membrane enzymes that hydrolyze phospholipids in the sn-2 position. The action of sPLA2 is associated with the work of two active sites. One, the interface binding site (IBS), is needed to bind the enzyme to the membrane surface. The other one, the catalytic site, is needed to hydrolyze the substrate. The interplay between sites, how the substrate protrudes to, and how the hydrolysis products release from, the catalytic site remains in the focus of investigations. Here, we report that bee venom PLA2 has two additional interface binding modes and enzyme activity through constant switching between three different orientations (modes of binding), only one of which is responsible for substrate uptake from the bilayer. The finding was obtained independently using atomic force microscopy and molecular dynamics. Switching between modes has biological significance: modes are steps of the enzyme moving along the membrane, product release in biological milieu, and enzyme desorption from the bilayer surface.


Subject(s)
Bee Venoms , Phospholipases A2, Secretory , Lipid Bilayers/metabolism , Hydrolysis , Phospholipids/metabolism
12.
Microorganisms ; 10(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35889073

ABSTRACT

Natural (microbial) communities are complex ecosystems with many interactions and cross-dependencies. Among other factors, selection pressures from the environment are thought to drive the composition and functionality of microbial communities. Fermented foods, when processed using non-industrial methods, harbor such natural microbial communities. In non-alcoholic fermented foods the fermenting microbiota is commonly dominated by 4-10 species of bacteria, which make them suitable model systems to study ecosystem assembly and functioning. In this study, we assess the influence of the environment on the composition of microbial communities of traditional fermented products from Africa. We compare differences between microbial communities that are found in similar products but come from different countries, hypothesizing they experience different environmental selection pressures. We analyzed bacterial community composition in 36 samples of various cereal-based fermented foods from Benin, Tanzania and Zambia using 16S rDNA amplicon sequencing. The differential abundance analysis indicates that the bacterial communities of fermented foods from the three countries are dominated by mostly lactic acid bacteria belonging to the genera of Lactobacillus, Weisella and Curvibacter. The samples from Zambia contain the most dissimilar microbial communities in comparison with samples from Benin and Tanzania. We propose this is caused by the relatively low temperature in Zambia, suggesting that indeed environmental selection can shape community composition of fermenting microbes.

13.
Thromb Haemost ; 122(6): 984-997, 2022 06.
Article in English | MEDLINE | ID: mdl-35322395

ABSTRACT

Two years since the outbreak of the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic, there remain few clinically effective drugs to complement vaccines. One is the anticoagulant, heparin, which in 2004 was found able to inhibit invasion of SARS-CoV (CoV-1) and which has been employed during the current pandemic to prevent thromboembolic complications and moderate potentially damaging inflammation. Heparin has also been shown experimentally to inhibit SARS-CoV-2 attachment and infection in susceptible cells. At high therapeutic doses however, heparin increases the risk of bleeding and prolonged use can cause heparin-induced thrombocytopenia, a serious side effect. One alternative, with structural similarities to heparin, is the plant-derived, semi-synthetic polysaccharide, pentosan polysulfate (PPS). PPS is an established drug for the oral treatment of interstitial cystitis, is well-tolerated, and exhibits weaker anticoagulant effects than heparin. In an established Vero cell model, PPS and its fractions of varying molecular weights inhibited invasion by SARS-CoV-2. Intact PPS and its size-defined fractions were characterized by molecular weight distribution and chemical structure using nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry, then employed to explore the structural basis of interactions with SARS-CoV-2 spike protein receptor-binding domain (S1 RBD) and the inhibition of Vero cell invasion. PPS was as effective as unfractionated heparin, but more effective in inhibiting cell infection than low-molecular-weight heparin (on a weight/volume basis). Isothermal titration calorimetry and viral plaque-forming assays demonstrated size-dependent binding to S1 RBD and inhibition of Vero cell invasion, suggesting the potential application of PPS as a novel inhibitor of SARS-CoV-2 infection.


Subject(s)
Pentosan Sulfuric Polyester , SARS-CoV-2 , Virus Attachment , Animals , Anticoagulants/pharmacology , Chlorocebus aethiops , Heparin/therapeutic use , Pentosan Sulfuric Polyester/pharmacology , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus , Vero Cells , Virus Attachment/drug effects
14.
Nutrients ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057569

ABSTRACT

The reactions of intestinal functional parameters to type 2 diabetes at a young age remain unclear. The study aimed to assess changes in the activity of intestinal enzymes, glucose absorption, transporter content (SGLT1, GLUT2) and intestinal structure in young Wistar rats with type 2 diabetes (T2D) and impaired glucose tolerance (IGT). To induce these conditions in the T2D (n = 4) and IGT (n = 6) rats, we used a high-fat diet and a low dose of streptozotocin. Rats fed a high-fat diet (HFD) (n = 6) or a standard diet (SCD) (n = 6) were used as controls. The results showed that in T2D rats, the ability of the small intestine to absorb glucose was higher in comparison to HFD rats (p < 0.05). This was accompanied by a tendency towards an increase in the number of enterocytes on the villi of the small intestine in the absence of changes in the content of SGLT1 and GLUT2 in the brush border membrane of the enterocytes. T2D rats also showed lower maltase and alkaline phosphatase (AP) activity in the jejunal mucosa compared to the IGT rats (p < 0.05) and lower AP activity in the colon contents compared to the HFD (p < 0.05) and IGT (p < 0.05) rats. Thus, this study provides insights into the adaptation of the functional and structural parameters of the small intestine in the development of type 2 diabetes and impaired glucose tolerance in young representatives.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Glucose Intolerance/complications , Glucose/pharmacokinetics , Intestine, Small/enzymology , Intestine, Small/metabolism , Alkaline Phosphatase/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Enterocytes/chemistry , Glucan 1,4-alpha-Glucosidase/metabolism , Glucose Transporter Type 2/analysis , Intestinal Absorption , Male , Rats , Rats, Wistar , Sodium-Glucose Transporter 1/analysis , alpha-Glucosidases/metabolism
15.
Lasers Surg Med ; 54(4): 611-622, 2022 04.
Article in English | MEDLINE | ID: mdl-34918347

ABSTRACT

OBJECTIVES: The development of compact diagnostic probes and instruments with an ability to direct access to organs and tissues and integration of these instruments into surgical workflows is an important task of modern physics and medicine. The need for such tools is essential for surgical oncology, where intraoperative visualization and demarcation of tumor margins define further prognosis and survival of patients. In this paper, the possible solution for this intraoperative imaging problem is proposed and its feasibility to detect tumorous tissue is studied experimentally. METHODS: For this aim, the sapphire scalpel was developed and fabricated using the edge-defined film-fed growth technique aided by mechanical grinding, polishing, and chemical sharpening of the cutting edge. It possesses optical transparency, mechanical strength, chemical inertness, and thermal resistance alongside the presence of the as-grown hollow capillary channels in its volume for accommodating optical fibers. The rounding of the cutting edge exceeds the same for metal scalpels and can be as small as 110 nm. Thanks to these features, sapphire scalpel combines tissue dissection with light delivering and optical diagnosis. The feasibility for the tumor margin detection was studied, including both gelatin-based tissue phantoms and ex vivo freshly excised specimens of the basal cell carcinoma from humans and the glioma model 101.8 from rats. These tumors are commonly diagnosed either non-invasively or intraoperatively using different modalities of fluorescence spectroscopy and imaging, which makes them ideal candidates for our feasibility test. For this purpose, fiber-based spectroscopic measurements of the backscattered laser radiation and the fluorescence signals were carried out in the visible range. RESULTS: Experimental studies show the feasibility of the proposed sapphire scalpel to provide a 2-mm-resolution of the tumor margins' detection, along with an ability to distinguish the tumor invasion region, which results from analysis of the backscattered optical fields and the endogenous or exogenous fluorescence data. CONCLUSIONS: Our findings justified a strong potential of the sapphire scalpel for surgical oncology. However, further research and engineering efforts are required to optimize the sapphire scalpel geometry and the optical diagnosis protocols to meet the requirements of oncosurgery, including diagnosis and resection of neoplasms with different localizations and nosologies.


Subject(s)
Aluminum Oxide , Neoplasms , Animals , Humans , Lasers , Margins of Excision , Optical Fibers , Phantoms, Imaging , Rats
16.
Toxins (Basel) ; 15(1)2022 12 20.
Article in English | MEDLINE | ID: mdl-36668826

ABSTRACT

In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I.


Subject(s)
Cobra Cardiotoxin Proteins , Elapidae , Animals , Elapidae/metabolism , Cobra Cardiotoxin Proteins/toxicity , Cobra Cardiotoxin Proteins/chemistry , Cytotoxins/toxicity , Cytotoxins/chemistry , Protein Conformation , Elapid Venoms/toxicity , Elapid Venoms/chemistry , Phospholipids/metabolism , Peptides/toxicity
17.
Pharmaceutics ; 15(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36678667

ABSTRACT

The blood-brain barrier (BBB) limits the delivery of majority of cancer drugs and thereby complicates brain tumor treatment. The nasal-brain-lymphatic system is discussed as a pathway for brain drug delivery overcoming the BBB. However, in most cases, this method is not sufficient to achieve a therapeutic effect due to brain drug delivery in a short distance. Therefore, it is necessary to develop technologies to overcome the obstacles facing nose-to-brain delivery of promising pharmaceuticals. In this study, we clearly demonstrate intranasal delivery of liposomes to the mouse brain reaching glioblastoma (GBM). In the experiments with ablation of the meningeal lymphatic network, we report an important role of meningeal pathway for intranasal delivery of liposomes to the brain. Our data revealed that GBM is characterized by a dramatic reduction of intranasal delivery of liposomes to the brain that was significantly improved by near-infrared (1267 nm) photostimulation of the lymphatic vessels in the area of the cribriform plate and the meninges. These results open new perspectives for non-invasive improvement of efficiency of intranasal delivery of cancer drugs to the brain tissues using nanocarriers and near-infrared laser-based therapeutic devices, which are commercially available and widely used in clinical practice.

18.
Article in English | MEDLINE | ID: mdl-34639397

ABSTRACT

Eco-evolutionary forces are the key drivers of ecosystem biodiversity dynamics. This resulted in a large body of theory, which has partially been experimentally tested by mimicking evolutionary processes in the laboratory. In the first part of this perspective, we outline what model systems are used for experimental testing of eco-evolutionary processes, ranging from simple microbial combinations and, more recently, to complex natural communities. Microbial communities of spontaneous fermented foods are a promising model system to study eco-evolutionary dynamics. They combine the complexity of a natural community with extensive knowledge about community members and the ease of manipulating the system in a laboratory setup. Due to rapidly developing sequencing techniques and meta-omics approaches incorporating data in building ecosystem models, the diversity in these communities can be analysed with relative ease while hypotheses developed in simple systems can be tested. Here, we highlight several eco-evolutionary questions that are addressed using microbial communities from fermented foods. These questions relate to analysing species frequencies in space and time, the diversity-stability relationship, niche space and community coalescence. We provide several hypotheses of the influence of these factors on community evolution specifying the experimental setup of studies where microbial communities of spontaneous fermented food are used.


Subject(s)
Fermented Foods , Microbiota , Biodiversity , Biological Evolution , Ecosystem , Models, Biological
19.
Carbohydr Polym ; 273: 118554, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34560966

ABSTRACT

Enoxaparin, widely used antithrombotic drug, is a polydisperse glycosaminoglycan with highly microheterogeneous structure dictated by both parent heparin heterogeneity and depolymerization conditions. While the process-related modifications of internal and terminal sequences of enoxaparin have been extensively studied, very little is known about the authentic non-reducing ends (NRE). In the present study a multi-step isolation and thorough structural elucidation by NMR and LC/MS allowed to identify 16 saturated tetramers along with 23 unsaturated ones in the complex enoxaparin tetrasaccharide fraction. Altogether the elucidated structures represent a unique enoxaparin signature, whereas the composition of saturated tetramers provides a structural readout strictly related to the biosynthesis of parent heparin NRE. In particular, both glucuronic and iduronic acids were detected at the NRE of macromolecular heparin. The tetrasaccharides bearing glucosamine at the NRE are most likely associated with the heparanase hydrolytic action. High sulfation degree and 3-O-sulfation are characteristic for both types of NRE.


Subject(s)
Enoxaparin/chemistry , Heparin/biosynthesis , Oligosaccharides/chemistry , Chromatography, High Pressure Liquid/methods , Enoxaparin/metabolism , Fibrinolytic Agents/chemistry , Glucosamine/metabolism , Glucuronic Acid/chemistry , Heparin Lyase/metabolism , Humans , Iduronic Acid/chemistry , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Oligosaccharides/metabolism
20.
Front Oncol ; 11: 666059, 2021.
Article in English | MEDLINE | ID: mdl-34109119

ABSTRACT

Advanced stage glioma is the most aggressive form of malignant brain tumors with a short survival time. Real-time pathology assisted, or image guided surgical procedures that eliminate tumors promise to improve the clinical outcome and prolong the lives of patients. Our work is focused on the development of a rapid and sensitive assay for intraoperative diagnostics of glioma and identification of optical markers essential for differentiation between tumors and healthy brain tissues. We utilized fluorescence lifetime imaging (FLIM) of endogenous fluorophores related to metabolism of the glioma from freshly excised brains tissues. Macroscopic time-resolved fluorescence images of three intracranial animal glioma models and surgical samples of patients' glioblastoma together with the white matter have been collected. Several established and new algorithms were applied to identify the imaging markers of the tumors. We found that fluorescence lifetime parameters characteristic of the glioma provided background for differentiation between the tumors and intact brain tissues. All three rat tumor models demonstrated substantial differences between the malignant and normal tissue. Similarly, tumors from patients demonstrated statistically significant differences from the peritumoral white matter without infiltration. While the data and the analysis presented in this paper are preliminary and further investigation with a larger number of samples is required, the proposed approach based on the macroscopic FLIM has a high potential for diagnostics of glioma and evaluation of the surgical margins of gliomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...