Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276503

ABSTRACT

Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously shown the capacity to enhance adaptive NK cell response. The obtained K562-21E cell line was employed to investigate proliferative responses of the CD57- NK cell subset of HCMV-seropositive and seronegative donors. Stimulation of CD57- NK cells with K562-21E/peptide resulted in an increased cell expansion during the 12-day culturing period, regardless of the serological HCMV status of the donor. The enhanced proliferation in response to the peptide was associated with a greater proportion of CD56brightHLA-DR+ NK cells. In later stages of cultivation, the greatest proliferative response to K562-21E/peptide was shown for a highly HCMV-seropositive donor. These expanded NK cells were characterized by the accumulation of CD57-KIR2DL2/3+NKG2C+NKG2A- cells, which are hypothesized to represent adaptive NK cell progenitors. The K562-21E feeder cells can be applied both for the accumulation of NK cells as therapeutic effectors, and for the study of NK cell maturation into the adaptive state after the HLA-E peptide presentation.

2.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948123

ABSTRACT

Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57-NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57- NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.


Subject(s)
CRISPR-Cas Systems , Cell Proliferation , Gene Expression Regulation , Genetic Vectors , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily C/biosynthesis , Receptors, KIR2DL2/biosynthesis , Receptors, KIR2DL3/biosynthesis , Retroviridae , Transduction, Genetic , Cell Death , Humans , K562 Cells , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily C/genetics , Receptors, KIR2DL2/genetics , Receptors, KIR2DL3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...