Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848492

ABSTRACT

The reaction of benzylsuccinate synthase, the radical-based addition of toluene to a fumarate cosubstrate, is initiated by hydrogen transfer from a conserved cysteine to the nearby glycyl radical in the active center of the enzyme. In this study, we analyze this step by comprehensive computer modeling, predicting (i) the influence of bound substrates or products, (ii) the energy profiles of forward- and backward hydrogen-transfer reactions, (iii) their kinetic constants and potential mechanisms, (iv) enantiospecificity differences, and (v) kinetic isotope effects. Moreover, we support several of the computational predictions experimentally, providing evidence for the predicted H/D-exchange reactions into the product and at the glycyl radical site. Our data indicate that the hydrogen transfer reactions between the active site glycyl and cysteine are principally reversible, but their rates differ strongly depending on their stereochemical orientation, transfer of protium or deuterium, and the presence or absence of substrates or products in the active site. This is particularly evident for the isotope exchange of the remaining protium atom of the glycyl radical to deuterium, which appears dependent on substrate or product binding, explaining why the exchange is observed in some, but not all, glycyl-radical enzymes.

2.
Appl Microbiol Biotechnol ; 108(1): 185, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289383

ABSTRACT

The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.


Subject(s)
Bacillus , Animals , Bacillus/genetics , Animal Feed , Biological Transport , Culture Media , Escherichia coli
3.
Pharmaceutics ; 15(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36986602

ABSTRACT

The processing of liquisolid systems (LSS), which are considered a promising approach to improving the oral bioavailability of poorly soluble drugs, has proven challenging due to the relatively high amount of liquid phase incorporated within them. The objective of this study was to apply machine-learning tools to better understand the effects of formulation factors and/or tableting process parameters on the flowability and compaction properties of LSS with silica-based mesoporous excipients as carriers. In addition, the results of the flowability testing and dynamic compaction analysis of liquisolid admixtures were used to build data sets and develop predictive multivariate models. In the regression analysis, six different algorithms were used to model the relationship between tensile strength (TS), the target variable, and eight other input variables. The AdaBoost algorithm provided the best-fit model for predicting TS (coefficient of determination = 0.94), with ejection stress (ES), compaction pressure, and carrier type being the parameters that influenced its performance the most. The same algorithm was best for classification (precision = 0.90), depending on the type of carrier used, with detachment stress, ES, and TS as variables affecting the performance of the model. Furthermore, the formulations with Neusilin® US2 were able to maintain good flowability and satisfactory values of TS despite having a higher liquid load compared to the other two carriers.

4.
Chem Biodivers ; 20(4): e202300134, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36898082

ABSTRACT

This is the first report on the separation and biological assessment of all metabolites derived from Pulicaria armena (Asteraceae) which is an endemic species narrowly distributed in the eastern part of Turkey. The phytochemical analysis of P. armena resulted in the identification of one simple phenolic glucoside together with eight flavon and flavonol derivatives whose chemical structures were elucidated by NMR experiments and by the comparison of the spectral data with the relevant literature. The screening of all molecules for their antimicrobial, anti-quorum sensing, and cytotoxic activities revealed the biological potential of some of the isolated compounds. Additionally, quorum sensing inhibitory activity of quercetagetin 5,7,3' trimethyl ether was supported by molecular docking studies in the active site of LasR which is the primary regulator of this cell-to-cell communication system in bacteria. Lastly, the critical molecular properties indicating drug-likeness of the compounds isolated from P. armena were predicted. As microbial infections can be a serious problem for cancer patients with compromised immune systems, this comprehensive phytochemical research on P. armena with its anti-quorum sensing and cytotoxic compounds can provide a new approach to the treatment.


Subject(s)
Anti-Infective Agents , Asteraceae , Flavonoids , Pulicaria , Quorum Sensing , Humans , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Asteraceae/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacology , Pulicaria/chemistry , Quorum Sensing/drug effects
5.
RSC Adv ; 13(7): 4376-4393, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36744286

ABSTRACT

Dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz) was used as a ligand for the synthesis of new copper(ii) and silver(i) complexes, [CuCl2(py-2pz)]2 (1), [Cu(CF3SO3)(H2O)(py-2pz)2]CF3SO3·2H2O (2), [Ag(py-2pz)2]PF6 (3) and {[Ag(NO3)(py-2pz)]·0.5H2O} n (4). The complexes were characterized by spectroscopic and electrochemical methods, while their structures were determined by single crystal X-ray diffraction analysis. The X-ray analysis revealed the bidentate coordination mode of py-2pz to the corresponding metal ion via its pyridine and pyrazine nitrogen atoms in all complexes, while in polynuclear complex 4, the heterocyclic pyrazine ring of one py-2pz additionally behaves as a bridging ligand between two Ag(i) ions. DFT calculations were performed to elucidate the structures of the investigated complexes in solution. The antimicrobial potential of the complexes 1-4 was evaluated against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two Candida (C. albicans and C. parapsilosis) species. Silver(i) complexes 3 and 4 have shown good antibacterial and antifungal properties with minimal inhibitory concentration (MIC) values ranging from 4.9 to 39.0 µM (3.9-31.2 µg mL-1). All complexes inhibited the filamentation of C. albicans and hyphae formation, while silver(i) complexes 3 and 4 had also the ability to inhibit the biofilm formation process of this fungus. The binding affinity of the complexes 1-4 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy to clarify the mode of their antimicrobial activity. Catechol oxidase biomimetic catalytic activity of copper(ii) complexes 1 and 2 was additionally investigated by using 3,5-di-tert-butylcatechol (3,5-DTBC) and o-aminophenol (OAP) as substrates.

6.
Int J Pharm ; 629: 122337, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36309293

ABSTRACT

3D printing in dosage forms fabrication is in the focus of researchers, however, the attempts in multiparticulate units (MPUs) preparation are scarce. The aim of this study was to fabricate different size MPUs by selective laser sintering (SLS), using different polymers, and investigate their processability based on the SeDeM Expert System approach. MPUs (1- or 2-mm size) were prepared with model drug (ibuprofen or caffeine), polymer (poly(ethylene)oxide (PEO), ethyl cellulose (EC) or methacrylic acid-ethyl acrylate copolymer (MA-EA)) and printing aid. Comprehensive sample characterization was performed and experimentally obtained parameters were mathematically transformed and evaluated using the SeDeM Expert System framework. The obtained samples exhibited irregular shape, despite the spherical printing object design. Polymer incorporated notably affected MPUs properties. The obtained samples exhibited low bulk density, good flowability-, as well as stability-related parameters, which indicated their suitability for filling into capsules or sachets. Low density values implied that compressibility enhancing excipients may be required for MPUs incorporation in tablets. Samples containing EC and MA-EA were found suitable for compression, due to high compacts tensile strength. The obtained results indicate that SeDeM Expert System may extended from powder compressibility evaluation tool to framework facilitating powders/multiparticulate units processing.


Subject(s)
Excipients , Expert Systems , Drug Compounding/methods , Tablets , Powders , Lasers
7.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293056

ABSTRACT

Curcumin and triangular silver nanoplates (TSNP)-incorporated bacterial cellulose (BC) films present an ideal antimicrobial material for biomedical applications as they afford a complete set of requirements, including a broad range of long-lasting potency and superior efficacy antimicrobial activity, combined with low toxicity. Here, BC was produced by Komagataeibacter medellinensis ID13488 strain in the presence of curcumin in the production medium (2 and 10%). TSNP were incorporated in the produced BC/curcumin films using ex situ method (21.34 ppm) and the antimicrobial activity was evaluated against Escherichia coli ATCC95922 and Staphylococcus aureus ATCC25923 bacterial strains. Biological activity of these natural products was assessed in cytotoxicity assay against lung fibroblasts and in vivo using Caenorhabditis elegans and Danio rerio as model organisms. Derived films have shown excellent antimicrobial performance with growth inhibition up to 67% for E. coli and 95% for S. aureus. In a highly positive synergistic interaction, BC films with 10% curcumin and incorporated TSNP have shown reduced toxicity with 80% MRC5 cells survival rate. It was shown that only 100% concentrations of film extracts induce low toxicity effect on model organisms' development. The combined and synergistic advanced anti-infective functionalities of the curcumin and TSNP incorporated in BC have a high potential for development for application within the clinical setting.


Subject(s)
Anti-Infective Agents , Biological Products , Curcumin , Metal Nanoparticles , Silver/pharmacology , Cellulose/pharmacology , Curcumin/pharmacology , Staphylococcus aureus , Escherichia coli , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology
8.
Molecules ; 27(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744855

ABSTRACT

Prodigiosins (prodiginines) are a class of bacterial secondary metabolites with remarkable biological activities and color. In this study, optimized production, purification, and characterization of prodigiosin (PG) from easily accessible Serratia marcescens ATCC 27117 strain has been achieved to levels of 14 mg/L of culture within 24 h. Furthermore, environmentally friendly bromination of produced PG was used to afford both novel mono- and dibrominated derivatives of PG. PG and its Br derivatives showed anticancer potential with IC50 values range 0.62-17.00 µg/mL for all tested cancer cell lines and induction of apoptosis but low selectivity against healthy cell lines. All compounds did not affect Caenorhabditiselegans at concentrations up to 50 µg/mL. However, an improved toxicity profile of Br derivatives in comparison to parent PG was observed in vivo using zebrafish (Danio rerio) model system, when 10 µg/mL applied at 6 h post fertilization caused death rate of 100%, 30% and 0% by PG, PG-Br, and PG-Br2, respectively, which is a significant finding for further structural optimizations of bacterial prodigiosins. The drug-likeness of PG and its Br derivatives was examined, and the novel Br derivatives obey the Lipinski's "rule of five", with an exemption of being more lipophilic than PG, which still makes them good targets for further structural optimization.


Subject(s)
Neoplasms , Prodigiosin , Animals , Apoptosis , Prodigiosin/metabolism , Prodigiosin/pharmacology , Serratia marcescens/metabolism , Zebrafish/metabolism
9.
Dalton Trans ; 51(13): 5322-5334, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35293926

ABSTRACT

In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl3(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4-7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole (6) and voriconazole (7). The complexes 4-7 and the corresponding antifungal azoles inhibited the growth of dermatophyte Microsporum canis at 50 and 25 µg mL-1. Gold(III) complexes 1-3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of 0.5 × MIC (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in Pseudomonas aeruginosa controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.


Subject(s)
Anti-Infective Agents , Antifungal Agents , Antifungal Agents/pharmacology , Azoles/pharmacology , Gold/pharmacology , Humans , Ligands
10.
Polymers (Basel) ; 13(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771249

ABSTRACT

Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young's modulus (E), 53-250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 °C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.

11.
Arch Pharm (Weinheim) ; 354(11): e2100238, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34374111

ABSTRACT

Several coumarin derivatives with a directly attached azole substituent at C-4 were synthesized and biologically studied for their anticancer properties. The cell lines used for this investigation (HeLa, K-562, MDA-MB-53, and MCF-7) demonstrated different sensitivities. The best response in the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay was shown by K-562 cells, with compounds displaying activity (3c, IC50 3.06 µM; 4a, IC50 5.24 µM; 4c, IC50 4.7 µM) similar to that of cisplatin (IC50 ~6 µM), which was used as the standard. The studied azole-substituted coumarins demonstrated weaker activity toward other cell lines, except for compound 4c, which was equally potent in the case of MCF-7 cells. Additional biological evaluations supported interference with the cell cycle as a potential mechanism of action and confirmed the absence of toxicity in zebrafish embryos. On the basis of these initial results, 4-azole coumarins should be explored further. Although their activity would need additional optimization, the fact that these compounds are fragment-like structures with MW <300 and clog P <3 offers enough flexibility to fine-tune their drug-like properties.


Subject(s)
Antineoplastic Agents/pharmacology , Coumarins/pharmacology , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Coumarins/chemical synthesis , Coumarins/chemistry , Female , HeLa Cells , Humans , Inhibitory Concentration 50 , K562 Cells , MCF-7 Cells , Male , Neoplasms/pathology , Structure-Activity Relationship , Toxicity Tests , Zebrafish
12.
Int J Pharm ; 605: 120847, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34216763

ABSTRACT

Liquisolid systems are emerging formulation approach for poorly soluble drugs, based on adsorption/absorption of drug dispersion and obtaining free-flowing powder with good compressibility. SeDeM Expert System represents a powder processability evaluation method. It may provide additional insight into liquisolid systems critical quality attributes, but the contribution of this approach remains to be explored. The aims of this study were: pellet preparation by combination of liquisolid technology and water granulation/extrusion, evaluation of liquisolid based systems (pellets/admixtures) and investigation into the applicability of SeDeM Expert System in liquisolid systems characterization. Pellets/admixtures were prepared with microcrystalline cellulose as carrier and crospovidone/silicon dioxide as coating agent. Ibuprofen solution in polyethylene glycol 400 was used as liquid phase. After comprehensive sample characterization, experimentally obtained parameters were mathematically transformed and evaluated in the SeDeM Expert System framework. Pellets exhibited low aspect ratio and excellent flowability, despite liquid load up to 52.2%. The investigated liquisolid admixtures exhibited good flowability and faster drug dissolution than pellets. Single pellet crushing test results exhibited strong correlation with compact indentation hardness and may be used as indentation hardness predictor. SeDeM Expert System provides useful insight into liquisolid system processability and comparative evaluation and it may facilitate final solid dosage form development.


Subject(s)
Expert Systems , Povidone , Drug Liberation , Powders , Solubility , Tablets
13.
Pharmaceutics ; 13(5)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063158

ABSTRACT

Co-processing (CP) provides superior properties to excipients and has become a reliable option to facilitated formulation and manufacturing of variety of solid dosage forms. Development of directly compressible formulations with high doses of poorly flowing/compressible active pharmaceutical ingredients, such as paracetamol, remains a great challenge for the pharmaceutical industry due to the lack of understanding of the interplay between the formulation properties, process of compaction, and stages of tablets' detachment and ejection. The aim of this study was to analyze the influence of the compression load, excipients' co-processing and the addition of paracetamol on the obtained tablets' tensile strength and the specific parameters of the tableting process, such as (net) compression work, elastic recovery, detachment, and ejection work, as well as the ejection force. Two types of neural networks were used to analyze the data: classification (Kohonen network) and regression networks (multilayer perceptron and radial basis function), to build prediction models and identify the variables that are predominantly affecting the tableting process and the obtained tablets' tensile strength. It has been demonstrated that sophisticated data-mining methods are necessary to interpret complex phenomena regarding the effect of co-processing on tableting properties of directly compressible excipients.

14.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810316

ABSTRACT

Three new silver(I) complexes [Ag(NO3)(tia)(H2O)]n (Ag1), [Ag(CF3SO3)(1,8-naph)]n (Ag2) and [Ag2(1,8-naph)2(H2O)1.2](PF6)2 (Ag3), where tia is thianthrene and 1,8-naph is 1,8-naphthyridine, were synthesized and structurally characterized by different spectroscopic and electrochemical methods and their crystal structures were determined by single-crystal X-ray diffraction analysis. Their antimicrobial potential was evaluated against four bacterial and three Candida species, and the obtained results revealed that these complexes showed significant activity toward the Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the investigated Candida species with minimal inhibitory concentration (MIC) values in the range 1.56-7.81 µg/mL. On the other hand, tia and 1,8-naph ligands were not active against the investigated strains, suggesting that their complexation with Ag(I) ion results in the formation of antimicrobial compounds. Moreover, low toxicity of the complexes was detected by in vivo model Caenorhabditis elegans. The interaction of the complexes with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied to evaluate their binding affinity towards these biomolecules for possible insights into the mode of antimicrobial activity. The binding affinity of Ag1-3 to BSA was higher than that for DNA, indicating that proteins could be more favorable binding sites for these complexes in comparison to the nucleic acids.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Heterocyclic Compounds/chemistry , Naphthyridines/chemistry , Silver/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Caenorhabditis elegans/drug effects , Candida/drug effects , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , DNA/metabolism , Molecular Structure , Protein Binding , Serum Albumin, Bovine/metabolism
15.
Dalton Trans ; 50(7): 2627-2638, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33523054

ABSTRACT

Five novel copper(ii) complexes with pyridine-4,5-dicarboxylate esters as ligands, [Cu(NO3)(py-2tz)(H2O)3]NO3 (1), [Cu(NO3)2(py-2metz)(H2O)] (2), [Cu(NO3)2(py-2py)(H2O)]·H2O (3), [CuCl2(py-2tz)]2 (4) and [CuCl2(py-2metz)]n (5) (py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate), were synthesized and structurally characterized by different spectroscopic and electrochemical methods. The structure of these complexes was determined by single-crystal X-ray diffraction analysis, confirming the bidentate coordination mode of the corresponding pyridine-4,5-dicarboxylate ester to the Cu(ii) ion through the nitrogen atoms. The antimicrobial potential of copper(ii) complexes 1-5 was assessed against two bacterial and two Candida species. These complexes showed better growth inhibiting activity against Candida spp. with respect to the tested bacterial species, also being moderately toxic towards normal human lung fibroblast cells (MRC-5). Complexes 1 and 4 showed the greatest ability to inhibit the filamentation of C. albicans, which is an important process during fungal infection, and these two complexes efficiently inhibited the biofilm formation of C. albicans at subinhibitory concentrations. Complex 4 also successfully prevented the adhesion of C. albicans in an in vitro epithelial cell model. The mechanism of the antifungal activity of copper(ii) complexes 1-5 was studied through their interaction with ct-DNA, as one of the possible target biomolecules, by fluorescence spectroscopy and gel electrophoresis. Finally, the ability of these complexes to bind to bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy.


Subject(s)
Antifungal Agents , Candida/drug effects , Coordination Complexes , Copper , Esters , Pyridines , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida/growth & development , Cell Line , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , DNA/chemistry , Esters/chemistry , Esters/pharmacology , Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pyridines/chemistry , Pyridines/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
16.
AAPS PharmSciTech ; 21(7): 242, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32839881

ABSTRACT

Liquisolid technology, as a promising approach for bioavailability enhancement, has received increasing attention in recent years. However, literature reports addressing the challenges for its industrial application, particularly those related to compaction behavior of liquisolid systems, are scarce. The aim of this study was to investigate the influence of process parameters and formulation variables on the flowability, wetting, and compaction properties of the liquisolid systems prepared in a fluid bed processor. The experiments with microcrystalline cellulose, as a carrier, were performed according to 23 full factorial design. The effects of liquid content, spray air pressure, and liquid feed rate on the properties of liquisolid systems were investigated. Liquisolid admixtures with microcrystalline cellulose were compared with those prepared with novel carriers, Fujicalin® and Neusilin® US2. "Out-die" Heckel, modified Walker, and Kuentz-Leuenberger models were used to analyze the compressibility of liquisolid admixtures. The results obtained showed that an increase in liquid content (in the range of 10 to 15%) led to a decrease in flowability of liquisolid admixtures with microcrystalline cellulose, as well as more pronounced influence of spraying conditions. On the other hand, higher liquid content led to higher compressibility. Fujicalin® and Neusilin® US2 liquisolid admixtures were found to have superior flowability and compressibility in comparison with those with microcrystalline cellulose, despite the considerably higher liquid load (50-55% liquid content in Neusilin® US2 compacts). Acceptable compactibility of the investigated liquisolid systems was observed. The fluid bed processor was shown to be suitable equipment for production of liquisolid systems, but with careful adjustment of process parameters.


Subject(s)
Drug Compounding/methods , Cellulose/chemistry , Chemistry, Pharmaceutical , Excipients/chemistry , Solubility , Tablets/chemistry
17.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396681

ABSTRACT

Copper(II) and zinc(II) complexes with clinically used antifungal drug fluconazole (fcz), {[CuCl2(fcz)2].5H2O}n, 1, and {[ZnCl2(fcz)2]·2C2H5OH}n, 2, were prepared and characterized by spectroscopic and crystallographic methods. The polymeric structure of the complexes comprises four fluconazole molecules monodentately coordinated via the triazole nitrogen and two chlorido ligands. With respect to fluconazole, complex 2 showed significantly higher antifungal activity against Candida krusei and Candida parapsilosis. All tested compounds reduced the total amount of ergosterol at subinhibitory concentrations, indicating that the mode of activity of fluconazole was retained within the complexes, which was corroborated via molecular docking with cytochrome P450 sterol 14α-demethylase (CYP51) as a target. Electrostatic, steric and internal energy interactions between the complexes and enzyme showed that 2 has higher binding potency to this target. Both complexes showed strong inhibition of C. albicans filamentation and biofilm formation at subinhibitory concentrations, with 2 being able to reduce the adherence of C. albicans to A549 cells in vitro. Complex 2 was able to reduce pyocyanin production in Pseudomonas aeruginosa between 10% and 25% and to inhibit its biofilm formation by 20% in comparison to the untreated control. These results suggest that complex 2 may be further examined in the mixed Candida-P. aeruginosa infections.

18.
Adv Exp Med Biol ; 1282: 37-69, 2020.
Article in English | MEDLINE | ID: mdl-31515709

ABSTRACT

Infective diseases have become health threat of a global proportion due to appearance and spread of microorganisms resistant to majority of therapeutics currently used for their treatment. Therefore, there is a constant need for development of new antimicrobial agents, as well as novel therapeutic strategies. Quinolines and quinolones, isolated from plants, animals, and microorganisms, have demonstrated numerous biological activities such as antimicrobial, insecticidal, anti-inflammatory, antiplatelet, and antitumor. For more than two centuries quinoline/quinolone moiety has been used as a scaffold for drug development and even today it represents an inexhaustible inspiration for design and development of novel semi-synthetic or synthetic agents exhibiting broad spectrum of bioactivities. The structural diversity of synthetized compounds provides high and selective activity attained through different mechanisms of action, as well as low toxicity on human cells. This review describes quinoline and quinolone derivatives with antibacterial, antifungal, anti-virulent, antiviral, and anti-parasitic activities with the focus on the last 10 years literature.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antiparasitic Agents , Antiviral Agents , Quinolines , Quinolones , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antiparasitic Agents/pharmacology , Antiviral Agents/pharmacology , Humans , Microbial Sensitivity Tests , Quinolines/pharmacology , Quinolones/pharmacology , Structure-Activity Relationship , Virulence/drug effects
19.
Eur J Pharm Sci ; 142: 105121, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31669762

ABSTRACT

Hot-melt coating (HMC) has been recognized as a promising technique in the production of solid dosage forms e.g., HMC of granules can be applied prior to compression in order to obtain modified drug release or taste masking. However, tableting properties of HMC granules have not been studied yet. In this work, we explored the influence of the lipid coating on granules tableting properties, and assessed quality attributes of the obtained tablets. Paracetamol granules, previously coated with the lipid excipient Precirol® ATO 5 using a hot-melt coating technique in modified fluidized-bed system, were evaluated in terms of work of compression, elastic recovery, tablets tensile strength, detachment stress and ejection stress. Regarding the product quality, tablets content uniformity, friability, disintegration time and drug release properties were tested. Our results demonstrated that tablets made of coated granules exhibited more pronounced elastic behaviour, and increased tensile strength in comparison to tablets made of uncoated granules, suggesting that lipid coating promotes elastic deformation and forms lipid matrix within the tablets. Additionally, low detachment and ejection stresses for tablets made of HMC granules indicated no need to add lubricant prior to tableting process. Evaluation of tablets properties revealed that tablets friability was not influenced by the presence of lipid coating on the compressed granules. However, formation of lipid matrix within the tablets made of HMC granules resulted in prolonged tablet disintegration time, and sustained drug release. Moreover, the performance of lipid matrix tablets, in terms of drug dissolution rate, was relatively insensitive to compression pressure variations in 104-173 MPa range. The obtained results indicate that tableting of HMC granules is a promising technique to obtain sustained release lipid matrix tablets of suitable pharmaceutical-technical properties.


Subject(s)
Acetaminophen/chemistry , Tablets/chemistry , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Drug Liberation/physiology , Excipients/chemistry , Hot Melt Extrusion Technology/methods , Lipids/chemistry , Solubility/drug effects , Tensile Strength/drug effects
20.
ACS Chem Biol ; 14(12): 2800-2809, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31647218

ABSTRACT

Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype's antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 µM), biofilm formation (BFIC50 = 50 µM), and motility. Experimentally, the compound's activity is achieved through competitive inhibition of PqsR, and structure-activity data were rationalized using molecular docking studies.


Subject(s)
Pseudomonas aeruginosa/drug effects , Pyocyanine/antagonists & inhibitors , Pyocyanine/biosynthesis , Quinolines/pharmacology , Biofilms , Inhibitory Concentration 50 , Molecular Docking Simulation , Pseudomonas aeruginosa/metabolism , Quantitative Structure-Activity Relationship , Quinolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...