Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(6): 5760-5770, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29302960

ABSTRACT

The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.

2.
ACS Nano ; 9(7): 7392-8, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26082976

ABSTRACT

We present a method to spin highly oriented continuous fibers of adjustable carbon nanotube (CNT) type, with mechanical properties in the high-performance range. By lowering the concentration of nanotubes in the gas phase, through either reduction of the precursor feed rate or increase in carrier gas flow rate, the density of entanglements is reduced and the CNT aerogel can thus be drawn (up to 18 draw ratio) and wound at fast rates (>50 m/min). This is achieved without affecting the synthesis process, as demonstrated by Raman spectroscopy, and implies that the parameters controlling composition in terms of CNT diameter and number of layers are decoupled from those fixing CNT orientation. Applying polymer fiber wet-spinning principles then, strong CNT fibers (1 GPa/SG) are produced under dilute conditions and high draw ratios, corresponding to highly aligned fibers (from wide- and small-angle X-ray scattering). This is demonstrated for fibers either made up of predominantly single-wall CNTs (SWCNTs) or predominantly multiwall CNTs (MWCNTs), which surprisingly have very similar tensile properties. Finally, we show that postspin densification has no substantial effect on either alignment or properties (mechanical and electrical). These results demonstrate a route to control CNT assembly and reinforce their potential as a high-performance fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...