Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 135(2): 456-466, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37391886

ABSTRACT

Acute enhancement of peripheral O2 diffusion may accelerate skeletal muscle O2 uptake (V̇o2) kinetics and lessen fatigue during transitions from rest to maximal contractions. Surgically isolated canine gastrocnemius muscles in situ (n = 6) were studied during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions at V̇o2peak, in two conditions: normoxia (CTRL) and hyperoxia ([Formula: see text] = 1.00) + administration of a drug (RSR-13), which right shifts the Hb-O2 dissociation curve (Hyperoxia + RSR-13). Before and during contractions, muscles were pump-perfused with blood at constant elevated flow ([Formula: see text]) and infused with the vasodilator adenosine. Arterial ([Formula: see text]) and muscle venous ([Formula: see text]) O2 concentrations were determined at rest and at 5- to 7-s intervals during contractions; V̇o2 was calculated as [Formula: see text]·([Formula: see text] - [Formula: see text]). Po2 at 50% of Hb saturation (standard P50) and mean microvascular Po2 ([Formula: see text]) were calculated by the Hill equation and a numerical integration technique. P50 [42 ± 7 (means ± SD) mmHg vs. 33 ± 2 mmHg, P = 0.02] and [Formula: see text] (218 ± 73 mmHg vs. 49 ± 4 mmHg, P = 0.003) were higher in Hyperoxia + RSR-13. Muscle force and fatigue were not different in the two conditions. V̇o2 kinetics (monoexponential fitting) were unexpectedly slower in Hyperoxia + RSR-13, due to a longer time delay (TD) [9.9 ± 1.7 s vs. 4.4 ± 2.2 s (P = 0.001)], whereas the time constant (τ) was not different [13.7 ± 4.3 s vs. 12.3 ± 1.9 s (P = 0.37)]; the mean response time (TD + τ) was longer in Hyperoxia + RSR-13 [23.6 ± 3.5 s vs. 16.7 ± 3.2 s (P = 0.003)]. Increased O2 availability deriving, in Hyperoxia + RSR-13, from higher [Formula: see text] and from presumably greater intramuscular O2 stores did not accelerate the primary component of the V̇o2 kinetics, and delayed the metabolic activation of oxidative phosphorylation.NEW & NOTEWORTHY In isolated perfused skeletal muscle, during transitions from rest to V̇o2peak, hyperoxia and a right-shifted oxyhemoglobin dissociation curve increased O2 availability by increasing microvascular Po2 and by presumably increasing intramuscular O2 stores. The interventions did not accelerate the primary component of the V̇o2 kinetics (as calculated from blood O2 unloading) and delayed the metabolic activation of oxidative phosphorylation. V̇o2 kinetics appear to be mainly controlled by intramuscular factors related to the use of high-energy "buffers."


Subject(s)
Hyperoxia , Animals , Dogs , Hyperoxia/metabolism , Oxygen/metabolism , Oxygen Consumption/physiology , Muscle, Skeletal/physiology , Kinetics
2.
Physiol Rep ; 6(20): e13888, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30350405

ABSTRACT

Obese adolescents (OB) have an increased O2 cost of exercise, attributable in part to an increased O2 cost of breathing. In a previous work a short (3-week) program of respiratory muscle endurance training (RMET) slightly reduced in OB the O2 cost of high-intensity cycling and improved exercise tolerance. We hypothesized that during treadmill walking the effects of RMET would be more pronounced than those observed during cycling. Sixteen OB (age 16.0 ± 0.8 years; body mass [BM] 127.7 ± 14.2 kg; body mass index 40.7 ± 4.0 kg/m2 ) underwent to 3-week RMET (n = 8) superimposed to a multidisciplinary BM reduction program, or (CTRL, n = 8) only to the latter. Heart rate (HR) and pulmonary O2 uptake ( V ˙ O2 ) were measured during incremental exercise and 12-min constant work rate (CWR) walking at 60% (moderate-intensity, MOD) and 120% (heavy-intensity, HEAVY) of the gas exchange threshold (GET). The O2 cost of walking (aerobic energy expenditure per unit of covered distance) was calculated as V ˙ O2 /velocity. BM decreased (~4-5 kg) both in CTRL and in RMET. V ˙ O2 peak and GET were not affected by both interventions; the time to exhaustion increased following RMET. During MOD and HEAVY RMET decreased V ˙ O2, the O2 cost of walking (MOD: 0.130 ± 0.033 mL/kg/m [before] vs. 0.109 ± 0.027 [after], P = 0.03; HEAVY: 0.196 ± 0.031 [before] vs. 0.180 ± 0.025 [after], P = 0.02), HR and rates of perceived exertion; no significant changes were observed in CTRL. In OB a short RMET program lowered the O2 cost of MOD and HEAVY walking and improved exercise tolerance. RMET could represent a useful adjunct in the control of obesity.


Subject(s)
Endurance Training/methods , Exercise Tolerance , Obesity/therapy , Oxygen Consumption , Respiratory Muscles/physiology , Walking/physiology , Adolescent , Energy Metabolism , Humans , Male , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...