Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364397

ABSTRACT

This work proposes a facile methodology for producing porous biochar material (ABC) from açaí kernel residue, produced by chemical impregnation with ZnCl2 (1:1) and pyrolysis at 650.0 °C. The characterization was achieved using several techniques, and the biochar material was employed as an adsorbent to remove catechol. The results show that ABC carbon has hydrophilic properties. The specific surface area and total pore volume are 1315 m2·g−1 and 0.7038 cm3·g−1, respectively. FTIR revealed the presence of oxygenated groups, which can influence catechol adsorption. The TGA/DTG indicated that the sample is thermally stable even at 580 °C. Adsorption studies showed that equilibrium was achieved in <50 min and the Avrami kinetic model best fits the experimental data, while Freundlich was observed to be the best-fitted isotherm model. Catechol adsorption on ABC biochar is governed by van der Waals forces and microporous and mesoporous filling mechanisms. The Qmax is 339.5 mg·g−1 (40 °C) with 98.36% removal of simulated effluent, showing that açaí kernel is excellent biomass to prepare good biochar that can be efficiently used to treat real industrial effluents.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Adsorption , Kinetics , Catechols , Seeds/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 366-373, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31030003

ABSTRACT

This paper describes, by the first time, a chemometric approach that combines a simple set of the UV-Vis spectra and partial least square regression (PLSR) for measuring the removal of five pharmaceuticals present in simulated hospital effluents by sorption using activated carbon. The use of multivariate calibration allowed the quantification of the remaining concentrations of the studied drugs present in a complex mixture with high accuracy, avoiding the need for the use of sophisticated methodologies based on chromatography. Isothermal sorption studies were performed on single-component solutions containing amoxicillin, paracetamol, propranolol, sodium diclofenac, or tetracycline as well as on a solution containing a mixture of all these 5 compounds. The isotherm data obtained were fitted to the Langmuir, Freundlich and Liu models. It was observed that for each pharmaceutical, the maximum sorption capacity of the activated carbon was higher for the single component than in the mixture. It was observed that the removal of paracetamol, propranolol, and tetracycline, the removal was complete (100%) and for amoxicillin and sodium diclofenac it was at least 92.71 ±â€¯3.15% and 91.82 ±â€¯0.95% respectively, indicating that the avocado seed activated carbon is an adsorbent with high sorption capacity that can remove five pharmaceuticals from simulated hospital effluents.

3.
Environ Technol ; 39(9): 1173-1187, 2018 May.
Article in English | MEDLINE | ID: mdl-28443387

ABSTRACT

Activated carbons (ACs) prepared from tucumã seed (Astrocaryum aculeatum) were used for 2-nitrophenol removal from aqueous solutions. The ACs were characterized by elemental analysis, FTIR, N2 adsorption/desorption isotherms, TGA, hydrophobicity/hydrophilicity balance, and total of acidic and basic groups. The ACs showed to have hydrophilic surfaces and they presented high specific surface areas (up to 1318 m2 g-1). In batch optimization studies, maximum removal was obtained at pH 7, contact time of 30 min, adsorbent dosage 1.5 gL-1 and temperature of 50°C. The general-order kinetic model and Liu isotherm model best fit the kinetic and equilibrium adsorption data with a maximum adsorption capacity of 1382 mg g-1 at 50°C. Effect of temperature and thermodynamic studies revealed that the adsorption processes of 2-nitrophenol onto ACs are dependent on temperature and are exothermic and spontaneous, respectively. About the applicability of the ACs for treating simulated effluents, the tucumã seed-activated carbon showed an excellent outcome in the treatment of simulated effluents, evidencing its high efficiency for phenolic compound adsorption. Tucumã seed-ACs showed to be cost effective and highly efficient adsorbents for efficient removal of 2-nitrophenol from aqueous solutions.


Subject(s)
Arecaceae , Charcoal/chemistry , Microwaves , Nitrophenols/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions , Thermodynamics , Water Pollutants, Chemical , Water Purification
4.
Environ Sci Pollut Res Int ; 24(27): 21807-21820, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28776292

ABSTRACT

Natural pozzolan is an amorphous silicate-based material of volcanic origin. In this work, the natural pozzolan was modified by using 3-aminopropyltriethoxysilane (APTES) as a grafting agent. This material was characterized by pHpzc, N2 adsorption/desorption curves, FTIR, TGA/DTG, DRUV, SEM, and elementary analysis. The functionalized materials were used for the removal of Reactive Black 5 (RB-5) and Brilliant Green 1 (BG-1) dyes from aqueous solutions using batch-contact adsorption. The characterization of modified pozzolan by FTIR, TGA/DTG, BET, and DRUV-vis revealed the effectiveness of grafting of amine functional group on pozzolan structure. The kinetic adsorption data were better fitted with general order for both dyes while for equilibrium models were better fitted by the Liu isotherm model. The maximum sorption capacities Q max (at 50 °C) obtained with the modified pozzolan were 350.6 and 300.9 mg g-1 for BG-1 and RB-5, at pH 9.0 and 2.0, respectively. The thermodynamic parameters show that the removal of dyes was spontaneous and endothermic. The modified material was also tested for the treatment of simulated dye house effluents showing very high efficiency.


Subject(s)
Naphthalenesulfonates/isolation & purification , Propylamines/chemistry , Quaternary Ammonium Compounds/isolation & purification , Silanes/chemistry , Adsorption , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Kinetics , Solutions , Thermodynamics , Water , Water Pollutants, Chemical/chemistry
5.
J Environ Manage ; 92(4): 1237-47, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21195535

ABSTRACT

The cupuassu shell (Theobroma grandiflorum) which is a food residue was used in its natural form as biosorbent for the removal of C.I. Reactive Red 194 and C.I. Direct Blue 53 dyes from aqueous solutions. This biosorbent was characterized by infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption curves. The effects of pH, biosorbent dosage and shaking time on biosorption capacities were studied. In acidic pH region (pH 2.0) the biosorption of the dyes were favorable. The contact time required to obtain the equilibrium was 8 and 18 h at 298 K, for Reactive Red 194 and Direct Blue 53, respectively. The Avrami fractionary-order kinetic model provided the best fit to experimental data compared with pseudo-first-order, pseudo-second-order and chemisorption kinetic adsorption models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Radke-Prausnitz isotherm models. For both dyes the equilibrium data were best fitted to the Sips isotherm model.


Subject(s)
Coloring Agents/metabolism , Malvaceae/metabolism , Adsorption , Brazil , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Models, Chemical , Nonlinear Dynamics , Textiles
6.
Phys Chem Chem Phys ; 11(25): 5086-91, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19562139

ABSTRACT

The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.


Subject(s)
Gold/chemistry , Indoles/chemistry , Nanoparticles/chemistry , Nickel/chemistry , Hydrogen Peroxide/chemistry , Isoindoles , Models, Molecular , Molecular Structure , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...