Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 184: 117096, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631596

ABSTRACT

High-resolution magnetic resonance imaging (HR-MRI) has been increasingly used to assess the trabecular bone structure. High susceptibility at the marrow/bone interface may significantly reduce the marrow's apparent transverse relaxation time (T2*), overestimating trabecular bone thickness. Ultrashort echo time MRI (UTE-MRI) can minimize the signal loss caused by susceptibility-induced T2* shortening. However, UTE-MRI is sensitive to chemical shift artifacts, which manifest as spatial blurring and ringing artifacts partially due to non-Cartesian sampling. In this study, we proposed UTE-MRI at the resonance frequency of fat to minimize marrow-related chemical shift artifacts and the overestimation of trabecular thickness. Cubes of trabecular bone from six donors (75 ± 4 years old) were scanned using a 3 T clinical scanner at the resonance frequencies of fat and water, respectively, using 3D UTE sequences with five TEs (0.032, 1.1, 2.2, 3.3, and 4.4 ms) and a clinical 3D gradient echo (GRE) sequence at 0.2 × 0.2 × 0.4 mm3 voxel size. Trabecular bone thickness was measured in 30 regions of interest (ROIs) per sample. MRI results were compared with thicknesses obtained from micro-computed tomography (µCT) at 50 µm3 voxel size. Linear regression models were used to calculate the coefficient of determination between MRI- and µCT-based trabecular thickness. All MRI-based trabecular thicknesses showed significant correlations with µCT measurements. The correlations were higher (examined with paired Student's t-test, P < 0.01) for 3D UTE images performed at the fat frequency (R2 = 0.59-0.74, P < 0.01) than those at the water frequency (R2 = 0.18-0.52, P < 0.01) and clinical GRE images (R2 = 0.39-0.47, P < 0.01). Significantly reduced correlations were observed with longer TEs. This study highlighted the feasibility of UTE-MRI at the fat frequency for a more accurate assessment of trabecular bone thickness.


Subject(s)
Cancellous Bone , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Cancellous Bone/diagnostic imaging , Aged , Male , Female , Adipose Tissue/diagnostic imaging
2.
Eur Radiol Exp ; 8(1): 21, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38316687

ABSTRACT

BACKGROUND: We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). METHODS: SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (µCT) at 9-µm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. RESULTS: α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). CONCLUSIONS: The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. RELEVANCE STATEMENT: This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. KEY POINTS: • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.


Subject(s)
Bone and Bones , Protons , Animals , Cattle , X-Ray Microtomography , Bone and Bones/diagnostic imaging , Cortical Bone/diagnostic imaging , Water
3.
Cureus ; 16(1): e52100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38347979

ABSTRACT

Background Carpal tunnel syndrome (CTS) is the most prevalent entrapment neuropathy affecting the upper limb. It is recognized as a complex condition that is attributed to both non-medical and medical risk factors. Lack of awareness leads to delays in seeking advice, diagnosis, and treatment.  Objective To determine the awareness of CTS, its associated symptoms, signs, and risk factors among the adult population. Subjects and methods A cross-sectional study design was carried out among the adult population in Arar city, Northern Saudi Arabia.  Results In total, 338 respondents participated in this study. More than one-third (40.8%) mentioned that median nerve entrapment is a cause of CTS. The most commonly cited risk factor by the respondents was engaging in physical tasks such as using a computer (53%). Additionally, 60% of participants agreed that symptoms of CTS include tingling and numbness in the thumb, index, and middle fingers. Conclusion The findings of the study indicated a lack of adequate community awareness about CTS among the studied population.

4.
Sci Rep ; 13(1): 10489, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380735

ABSTRACT

Globally, COVID-19 affected radiopharmaceutical laboratories. This study sought to determine the economic, service, and research impacts of COVID-19 on radiopharmacy. This online survey was conducted with the participation of employees from nuclear medicine and radiopharmaceutical companies. The socioeconomic status of the individuals was collected. The study was participated by 145 medical professionals from 25 different countries. From this work, it is evident that 2-deoxy-2-[18F]fluoro-D-glucose (2-[18F]FDG), and 99mTc-labeled macro aggregated albumin 99mTc-MAA were necessary radiopharmaceuticals used by 57% (83/145and 34% (49/145;) respondents, respectively for determining how COVID infections affect a patient's body. The normal scheduling procedure for the radiopharmacy laboratory was reduced by more than half (65%; 94/145). In COVID-19, 70% (102/145) of respondents followed the regulations established by the local departments. Throughout the pandemic, there was a 97% (141/145) decrease in all staffing recruitment efforts. The field of nuclear medicine research, as well as the radiopharmaceutical industry, were both adversely affected by COVID-19.


Subject(s)
COVID-19 , Nuclear Medicine , Humans , Radiopharmaceuticals , COVID-19/epidemiology , Radionuclide Imaging , Fluorodeoxyglucose F18
5.
Bone ; 169: 116676, 2023 04.
Article in English | MEDLINE | ID: mdl-36657630

ABSTRACT

Ultrashort echo time (UTE) MRI can image and consequently enable quantitative assessment of cortical bone. UTE-MRI-based evaluation of bone is largely underutilized due to the high cost and time demands of MRI in general. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques (∼ 5 mins scan time each), which can potentially reduce the time demand and cost in future clinical studies. This study aimed to investigate the correlations of PI and SR measures with cortical bone microstructural and mechanical properties. Cortical bone strips (n = 135) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using a dual-echo 3D Cones UTE sequence and a 3D Cones IR-UTE sequence for PI and SR calculations, respectively. Average bone mineral density, porosity, and pore size were measured using microcomputed tomography (µCT). Bone mechanical properties were measured using 4-point bending tests. The µCT measures showed significant correlations with PI (moderate to strong, R = 0.68-0.71) and SR (moderate, R = 0.58-0.68). Young's modulus, yield stress, and ultimate stress demonstrated significant moderate correlations with PI and SR (R = 0.52-0.62) while significant strong correlations with µCT measures (R > 0.7). PI and SR can potentially serve as fast and noninvasive (non-ionizing radiation) biomarkers for evaluating cortical bone in various bone diseases.


Subject(s)
Bone and Bones , Cortical Bone , X-Ray Microtomography , Porosity , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods
6.
Magn Reson Imaging ; 88: 9-19, 2022 05.
Article in English | MEDLINE | ID: mdl-35091024

ABSTRACT

Areal bone mineral density (aBMD) from dual-energy x-ray absorptiometry (DEXA) and volumetric bone mineral density (vBMD) have demonstrated limited capabilities in the evaluation of bone mechanical competence and prediction of bone fracture. Predicting the macroscopic mechanical behavior of the bone structure has been challenging because of the heterogeneous and anisotropic nature of bone, such as the dependencies on loading direction, anatomical location, and sample dimensions. Magnetic resonance imaging (MRI) has been introduced as a promising modality that can be coupled with finite element analysis (FEA) for the assessment of bone mechanical competence. This review article describes studies investigating MRI-based micro-FEA as a potential non-invasive method to predict bone mechanical competence and facilitate bone fracture risk estimation without exposure to ionizing radiation. Specifically, the steps, applications, and future potential of FEA using indirect and direct bone imaging are discussed.


Subject(s)
Bone Density , Bone and Bones , Absorptiometry, Photon/methods , Bone and Bones/diagnostic imaging , Finite Element Analysis , Magnetic Resonance Imaging
7.
NMR Biomed ; 33(3): e4233, 2020 03.
Article in English | MEDLINE | ID: mdl-31820518

ABSTRACT

Mechanical and microstructural evaluations of cortical bone using ultrashort echo time magnetic resonance imaging (UTE-MRI) have been performed increasingly in recent years. UTE-MRI acquires considerable signal from cortical bone and enables quantitative bone evaluations. Fitting bone apparent transverse magnetization (T2*) decay using a bicomponent model has been regularly performed to estimate bound water (BW) and pore water (PW) in the quantification of bone matrix and porosity, respectively. Human cortical bone possesses a considerable amount of fat, which appears as MRI T2* signal oscillation and can subsequently lead to BW overestimation when using a bicomponent model. Tricomponent T2* fitting model has been developed to improve BW and PW estimations by accounting for fat contribution in the MRI signal. This study aimed to investigate the correlations of microstructural and mechanical properties of human cortical bone with water pool fractions obtained from a tricomponent T2* model. 135 cortical bone strips (~4 × 2 × 40 mm3 ) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using ten sets of dual-echo 3D-UTE-Cones sequences (TE = 0.032-24.0 ms) on a 3 T MRI scanner for T2* fitting analyses. Average bone porosity and pore size were measured using microcomputed tomography (µCT) at 9 µm voxel size. Bone mechanical properties were measured using 4-point bending tests. Using a tricomponent model, bound water fraction (FracBW ) showed significant strong (R = 0.70, P < 0.01) and moderate (R = 0.58-0.62, P < 0.01) correlations with porosity and mechanical properties, respectively. Correlations of bone microstructural and mechanical properties with water pool fractions were higher for tricomponent model results compared with the bicomponent model. The tricomponent T2* fitting model is suggested as a useful technique for cortical bone evaluation where the MRI contribution of bone fat is accounted for.


Subject(s)
Cortical Bone/diagnostic imaging , Cortical Bone/physiology , Magnetic Resonance Imaging , Protons , Water/chemistry , Biomechanical Phenomena , Female , Humans , Linear Models , Male , Middle Aged , Time Factors , X-Ray Microtomography
8.
Bone Rep ; 11: 100220, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31440531

ABSTRACT

Cortical bone shows as a signal void when using conventional clinical magnetic resonance imaging (MRI). Ultrashort echo time MRI (UTE-MRI) can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the organic matrix of bone. This study aimed to examine UTE-MT MRI techniques to estimate the mechanical properties of cortical bone. A total of 156 rectangular human cortical bone strips were harvested from the tibial and femoral midshafts of 43 donors (62 ±â€¯22 years old, 62 specimens from females, 94 specimens from males). Bone specimens were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a micro-computed tomography (µCT) scanner. A series of MT pulse saturation powers (400°, 600°, 800°) and frequency offsets (2, 5, 10, 20, 50 kHz) was used to measure the macromolecular fraction (MMF) utilizing a two-pool MT model. Failure mechanical properties of the bone specimens were measured using 4-point bending tests. MMF from MRI results showed significant strong correlations with cortical bone porosity (R = -0.72, P < 0.01) and bone mineral density (BMD) (R = +0.71, P < 0.01). MMF demonstrated significant moderate correlations with Young modulus, yield stress, and ultimate stress (R = 0.60-0.61, P < 0.01). These results suggest that the two-pool UTE-MT model focusing on the organic matrix of bone can potentially serve as a novel tool to detect the variations of bone mechanical properties and intracortical porosity.

9.
J Mech Behav Biomed Mater ; 65: 29-41, 2017 01.
Article in English | MEDLINE | ID: mdl-27552597

ABSTRACT

Osteoporotic fractures poses one of the most problematic health issues that affects millions of people by weakening their bones (Osteoporosis). Polymethylmethacrylate (PMMA) cement is usually used to augment the bone and stabilize the fractures. Despite the benefit of using PMMA, it might cause a leakage where the cement undesirably access the surrounding tissues or vessels and lead to a serious complications. Consequently, it is important to study the leakage phenomenon and associated geometric and operation interactions. Although the experimental leakage models have been reported in many studies, a representative numerical leakage model is not exist. Therefore, the objectives of the present paper are to: (a) to develop and validate a representative numerical leakage model; and (b) to investigate numerically and analytically the importance of the rheological parameters (viscosity and relaxation time) on the cement flow to reduce the risk of leakage. ANSYS Polyflow was utilized to implement a 2D numerical leakage model to study the interaction of complex rheological parameters of the cement with the operational and geometrical structure of the representative porous media. In this model, the cement (represented by the upper-convected Maxwell model) flows from the entrance (tip of an 8 gauge cannula) through a porous media with a leakage path (blood vessels) toward the output (Bottom side). The verified and validated numerical leakage model showed the importance of the elastic and viscous part of the cement to control the uniformity of the distributed cement and augmentation pressure, respectively. Moreover, increasing the flow rate can lead to reduce the risk of leakage since the elastic effect will increase. Geometrical parameters of the porous media has a minor effect on changing the elasticity and subsequently on the uniformity of the distributed cement. In conclusion, Cement rheological parameters are found to be the most influential parameters to reduce the risk of leakage by controlling the uniformity of the distributed cement and the augmentation pressure.


Subject(s)
Bone Cements/analysis , Osteoporosis/therapy , Polymethyl Methacrylate/analysis , Viscoelastic Substances/analysis , Humans , Models, Theoretical , Porosity , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...