Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893433

ABSTRACT

Upconversion nanoparticles (UCNPs) and carbon quantum dots (CQDs) have emerged as promising candidates for enhancing both the stability and efficiency of perovskite solar cells (PSCs). Their rising prominence is attributed to their dual capabilities: they effectively passivate the surfaces of perovskite-sensitive materials while simultaneously serving as efficient spectrum converters for sunlight. In this work, we synthesized UCNPs doped with erbium ions as down/upconverting ions for ultraviolet (UV) and near-infrared (NIR) light harvesting. Various percentages of the synthesized UCNPs were integrated into the mesoporous layers of PSCs. The best photovoltaic performance was achieved by a PSC device with 30% UCNPs doped in the mesoporous layer, with PCE = 16.22% and a fill factor (FF) of 74%. In addition, the champion PSCs doped with 30% UCNPs were then passivated with carbon quantum dots at different spin coating speeds to improve their photovoltaic performance. When compared to the pristine PSCs, a fabricated PSC device with 30% UCNPs passivated with CQDs at a spin coating speed of 3000 rpm showed improved power conversion efficiency (PCE), from 16.65% to 18.15%; a higher photocurrent, from 20.44 mA/cm2 to 22.25 mA/cm2; and a superior fill factor (FF) of 76%. Furthermore, the PSCs integrated with UCNPs and CQDs showed better stability than the pristine devices. These findings clear the way for the development of effective PSCs for use in renewable energy applications.

2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430919

ABSTRACT

Upconversion nanoparticles (UCNPs) and carbon quantum dots (CQDs) have recently received a lot of attention as promising materials to improve the stability and efficiency of perovskite solar cells (PSCs). This is because they can passivate the surfaces of perovskite-sensitive materials and act as a spectrum converter for sunlight. In this study, we mixed and added both promising nanomaterials to PSC layers at the ideal mixing ratios. When compared to the pristine PSCs, the fabricated PSCs showed improved power conversion efficiency (PCE), from 16.57% to 20.44%, a higher photocurrent, and a superior fill factor (FF), which increased from 70% to 75%. Furthermore, the incorporation of CQDs into the manufactured PSCs shielded the perovskite layer from water contact, producing a device that was more stable than the original.


Subject(s)
Nanoparticles , Quantum Dots , Carbon , Sunlight
3.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745453

ABSTRACT

In this work, high-quality lithium-based, LiYF4=Yb3+,Er3+ upconversion (UC) thin film was electrodeposited on fluorene-doped tin oxide (FTO) glass for solar cell applications. A complete perovskite solar cell (PSC) was fabricated on top of the FTO glass coated with UC thin film and named (UC-PSC device). The fabricated UC-PSC device demonstrated a higher power conversion efficiency (PCE) of 19.1%, an additional photocurrent, and a better fill factor (FF) of 76% in comparison to the pristine PSC device (PCE = ~16.57%; FF = 71%). Furthermore, the photovoltaic performance of the UC-PSC device was then tested under concentrated sunlight with a power conversion efficiency (PCE) of 24% without cooling system complexity. The reported results open the door toward efficient PSCs for renewable and green energy applications.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34835673

ABSTRACT

In this work, we report an easy, efficient method to synthesize high quality lithium-based upconversion nanoparticles (UCNPs) which combine two promising materials (UCNPs and lithium ions) known to enhance the photovoltaic performance of perovskite solar cells (PSCs). Incorporating the synthesized YLiF4:Yb,Er nanoparticles into the mesoporous layer of the PSCs cells, at a certain doping level, demonstrated a higher power conversion efficiency (PCE) of 19%, additional photocurrent, and a better fill factor (FF) of 82% in comparison to undoped PSCs (PCE = ~16.5%; FF = 71%). The reported results open a new avenue toward efficient PSCs for renewable energy applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...