Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
JCO Precis Oncol ; 8: e2300456, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38691816

ABSTRACT

PURPOSE: Here, we report the sensitivity of a personalized, tumor-informed circulating tumor DNA (ctDNA) assay (Signatera) for detection of molecular relapse during long-term follow-up of patients with breast cancer. METHODS: A total of 156 patients with primary breast cancer were monitored clinically for up to 12 years after surgery and adjuvant chemotherapy. Semiannual blood samples were prospectively collected, and analyzed retrospectively to detect residual disease by ultradeep sequencing using ctDNA assays, developed from primary tumor whole-exome sequencing data. RESULTS: Personalized Signatera assays detected ctDNA ahead of clinical or radiologic relapse in 30 of the 34 patients who relapsed (patient-level sensitivity of 88.2%). Relapse was predicted with a lead interval of up to 38 months (median, 10.5 months; range, 0-38 months), and ctDNA positivity was associated with shorter relapse-free survival (P < .0001) and overall survival (P < .0001). All relapsing triple-negative patients (n = 7/23) had a ctDNA-positive test within a median of 8 months (range, 0-19 months), while the 16 nonrelapsed patients with triple-negative breast cancer remained ctDNA-negative during a median follow-up of 58 months (range, 8-99 months). The four patients who had negative tests before relapse all had hormone receptor-positive (HR+) disease and conversely, five of the 122 nonrelapsed patients (all HR+) had an occasional positive test. CONCLUSION: Serial postoperative ctDNA assessment has strong prognostic value, provides a potential window for earlier therapeutic intervention, and may enable more effective monitoring than current clinical tests such as cancer antigen 15-3. Our study provides evidence that those with serially negative ctDNA tests have superior clinical outcomes, providing reassurance to patients with breast cancer. For select cases with HR+ disease, decisions about treatment management might require serial monitoring despite the ctDNA-positive result.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/surgery , Circulating Tumor DNA/blood , Middle Aged , Prognosis , Follow-Up Studies , Aged , Adult , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Retrospective Studies , Aged, 80 and over
2.
Cancer ; 130(10): 1758-1765, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38422026

ABSTRACT

BACKGROUND: In early-stage non-small cell lung cancer (NSCLC), recurrence is frequently observed. Circulating tumor DNA (ctDNA) has emerged as a noninvasive tool to risk stratify patients for recurrence after curative intent therapy. This study aimed to risk stratify patients with early-stage NSCLC via a personalized, tumor-informed multiplex polymerase chain reaction (mPCR) next-generation sequencing assay. METHODS: This retrospective cohort study included patients with stage I-III NSCLC. Recruited patients received standard-of-care management (surgical resection with or without adjuvant chemotherapy, followed by surveillance). Whole-exome sequencing of NSCLC resected tissue and matched germline DNA was used to design patient-specific mPCR assays (Signatera, Natera, Inc) to track up to 16 single-nucleotide variants in plasma samples. RESULTS: The overall cohort with analyzed plasma samples consisted of 57 patients. Stage distribution was 68% for stage I and 16% each for stages II and III. Presurgery (i.e., at baseline), ctDNA was detected in 15 of 57 patients (26%). ctDNA detection presurgery was significantly associated with shorter recurrence-free survival (RFS; hazard ratio [HR], 3.54; 95% confidence interval [CI], 1.00-12.62; p = .009). In the postsurgery setting, ctDNA was detected in seven patients, of whom 100% experienced radiological recurrence. ctDNA positivity preceded radiological findings by a median lead time of 2.8 months (range, 0-12.9 months). Longitudinally, ctDNA detection at any time point was associated with shorter RFS (HR, 16.1; 95% CI, 1.63-158.9; p < .0001). CONCLUSIONS: ctDNA detection before surgical resection was strongly associated with a high risk of relapse in early-stage NSCLC in a large unique Asian cohort. Prospective studies are needed to assess the clinical utility of ctDNA status in this setting.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , High-Throughput Nucleotide Sequencing , Lung Neoplasms , Neoplasm Recurrence, Local , Neoplasm Staging , Neoplasm, Residual , Humans , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/pathology , Male , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Female , Middle Aged , Aged , Retrospective Studies , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , High-Throughput Nucleotide Sequencing/methods , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Early Detection of Cancer/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Adult , Aged, 80 and over , Multiplex Polymerase Chain Reaction/methods
3.
Eur Urol ; 85(2): 114-122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37500339

ABSTRACT

BACKGROUND: Interim results from IMvigor010 showed an overall survival (OS) benefit for adjuvant atezolizumab (anti-PD-L1) versus observation in patients with circulating tumor DNA (ctDNA)-positive muscle-invasive urothelial carcinoma (MIUC). OBJECTIVE: To report updated OS and safety by ctDNA status. DESIGN, SETTING, AND PARTICIPANTS: This ad hoc analysis from a global, open-label, randomized, phase 3 trial (NCT02450331) included intention-to-treat (ITT) population with evaluable cycle 1 day 1 (C1D1) ctDNA samples. INTERVENTION: Atezolizumab (1200 mg every 3 wk) or observation for ≤1 yr. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: OS, relapse rates, and safety by ctDNA status were assessed. RESULTS AND LIMITATIONS: Among 581 of 809 ITT patients included, 214 (37%) were ctDNA positive. Atezolizumab did not improve OS versus observation in ITT patients (hazard ratio [HR] 0.91 [95% confidence interval {CI} 0.73-1.13]; median follow-up 46.8 mo [interquartile range, 36.1-53.6]). In the observation arm, ctDNA positivity versus negativity was associated with shorter OS (HR 6.3 [95% CI 4.3-9.3]). The ctDNA positivity identified patients with an OS benefit favoring atezolizumab versus observation (HR 0.59 [95% CI 0.42-0.83]). A greater reduction in ctDNA levels with atezolizumab (C3D1) was associated with longer OS (100% clearance, 60.0 mo [95% CI 35.5-not estimable]; 50-99% reduction, 34.3 mo [95% CI 15.2-not estimable]; <50% reduction, 19.9 mo [95% CI 16.4-32.2]). The ctDNA positivity at C1D1 + C3D1 was associated with relapse with greater sensitivity than C1D1 alone (68% vs 57%). Adverse events were more frequent with atezolizumab than with observation, regardless of ctDNA status. A study limitation was its exploratory design. CONCLUSIONS: Evidence suggests that ctDNA positivity in MIUC predicts a benefit with atezolizumab. An in-progress prospective study will further evaluate these findings. PATIENT SUMMARY: Among patients with urothelial cancer after surgery, survival was poorer if tumor-derived DNA was detected in their bloodstream; these patients' survival was longer with atezolizumab versus observation. Bloodstream tumor-derived DNA may identify patients who benefit from atezolizumab.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Transitional Cell , Circulating Tumor DNA , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Circulating Tumor DNA/genetics , Prospective Studies , Treatment Outcome , Neoplasm Recurrence, Local , Adjuvants, Immunologic/therapeutic use , Muscles/pathology , Recurrence , Antineoplastic Combined Chemotherapy Protocols
4.
Mol Oncol ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38037739

ABSTRACT

Several studies have demonstrated the prognostic value of circulating tumor DNA (ctDNA); however, the correlation of mean tumor molecules (MTM)/ml of plasma and mean variant allele frequency (mVAF; %) with clinical parameters is yet to be understood. In this study, we analyzed ctDNA data in a pan-cancer cohort of 23 543 patients who had ctDNA testing performed using a personalized, tumor-informed assay (Signatera™, mPCR-NGS assay). For ctDNA-positive patients, the correlation between MTM/ml and mVAF was examined. Two subanalyses were performed: (a) to establish the association of ctDNA with tumor volume and (b) to assess the correlation between ctDNA dynamics and patient outcomes. On a global cohort, a positive correlation between MTM/ml and mVAF was observed. Among 18 426 patients with longitudinal ctDNA measurements, 13.3% had discordant trajectories between MTM/ml and mVAF at subsequent time points. In metastatic patients receiving immunotherapy (N = 51), changes in ctDNA levels expressed both in MTM/ml and mVAF showed a statistically significant association with progression-free survival; however, the correlation with MTM/ml was numerically stronger.

5.
Clin Cancer Res ; 29(23): 4797-4807, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37782315

ABSTRACT

PURPOSE: To investigate whether circulating tumor DNA (ctDNA) assessment in patients with muscle-invasive bladder cancer predicts treatment response and provides early detection of metastatic disease. EXPERIMENTAL DESIGN: We present full follow-up results (median follow-up: 68 months) from a previously described cohort of 68 neoadjuvant chemotherapy (NAC)-treated patients who underwent longitudinal ctDNA testing (712 plasma samples). In addition, we performed ctDNA evaluation of 153 plasma samples collected before and after radical cystectomy (RC) in a separate cohort of 102 NAC-naïve patients (median follow-up: 72 months). Total RNA sequencing of tumors was performed to investigate biological characteristics of ctDNA shedding tumors. RESULTS: Assessment of ctDNA after RC identified metastatic relapse with a sensitivity of 94% and specificity of 98% using the expanded follow-up data for the NAC-treated patients. ctDNA dynamics during NAC was independently associated with patient outcomes when adjusted for pathologic downstaging (HR = 4.7; P = 0.029). For the NAC-naïve patients, ctDNA was a prognostic predictor before (HR = 3.4; P = 0.0005) and after RC (HR = 17.8; P = 0.0002). No statistically significant difference in recurrence-free survival for patients without detectable ctDNA at diagnosis was observed between the cohorts. Baseline ctDNA positivity was associated with the Basal/Squamous (Ba/Sq) subtype and enrichment of epithelial-to-mesenchymal transition and cell cycle-associated gene sets. CONCLUSIONS: ctDNA is prognostic in NAC-treated and NAC-naïve patients with more than 5 years follow-up and outperforms pathologic downstaging in predicting treatment efficacy. Patients without detectable ctDNA at diagnosis may benefit significantly less from NAC, but additional studies are needed.


Subject(s)
Carcinoma, Transitional Cell , Circulating Tumor DNA , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/drug therapy , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Circulating Tumor DNA/genetics , Follow-Up Studies , Neoplasm Recurrence, Local/genetics , Neoadjuvant Therapy/methods
6.
Front Oncol ; 13: 1253629, 2023.
Article in English | MEDLINE | ID: mdl-37795442

ABSTRACT

Background: Sensitive and reliable biomarkers for early detection of recurrence are needed to improve post-definitive radiation risk stratification, disease management, and outcomes for patients with unresectable early-stage or locally advanced non-small cell lung cancer (NSCLC) who are treated with definitive radiation therapy (RT). This prospective, multistate single-center, cohort study investigated the association of circulating tumor DNA (ctDNA) status with recurrence in patients with unresectable stage I-III NSCLC who underwent definitive RT. Methods: A total of 70 serial plasma samples from 17 NSCLC patients were collected before, during, and after treatment. A personalized, tumor-informed ctDNA assay was used to track a set of up to 16 somatic, single nucleotide variants in the associated patient's plasma samples. Results: Pre-treatment ctDNA detection rate was 82% (14/17) and varied based on histology and stage. ctDNA was detected in 35% (6/17) of patients at the first post-RT timepoint (median of 1.66 months following the completion of RT), all of whom subsequently developed clinical progression. At this first post-RT time point, patients with ctDNA-positivity had significantly worse progression-free survival (PFS) [hazard ratio (HR): 24.2, p=0.004], and ctDNA-positivity was the only significant prognostic factor associated with PFS (HR: 13.4, p=0.02) in a multivariate analysis. All patients who developed clinical recurrence had detectable ctDNA with an average lead time over radiographic progression of 5.4 months, and post-RT ctDNA positivity was significantly associated with poor PFS (p<0.0001). Conclusion: Personalized, longitudinal ctDNA monitoring can detect recurrence early in patients with unresectable NSCLC patients undergoing curative radiation and potentially risk-stratify patients who might benefit most from treatment intensification.

7.
Front Oncol ; 13: 1221718, 2023.
Article in English | MEDLINE | ID: mdl-37601688

ABSTRACT

Introduction: Circulating tumor DNA (ctDNA) detection postoperatively may identify patients with urothelial cancer at a high risk of relapse. Pragmatic tools building off clinical tumor next-generation sequencing (NGS) platforms could have the potential to increase assay accessibility. Methods: We evaluated the widely available Foundation Medicine comprehensive genomic profiling (CGP) platform as a source of variants for tracking of ctDNA when analyzing residual samples from IMvigor010 (ClinicalTrials.gov identifier NCT02450331), a randomized adjuvant study comparing atezolizumab with observation after bladder cancer surgery. Current methods often involve germline sampling, which is not always feasible or practical. Rather than performing white blood cell sequencing to filter germline and clonal hematopoiesis (CH) variants, we applied a bioinformatic approach to select tumor (non-germline/CH) variants for molecular residual disease detection. Tissue-informed personalized multiplex polymerase chain reaction-NGS assay was used to detect ctDNA postsurgically (Natera). Results: Across 396 analyzed patients, prevalence of potentially actionable alterations was comparable with the expected prevalence in advanced disease (13% FGFR2/3, 20% PIK3CA, 13% ERBB2, and 37% with elevated tumor mutational burden ≥10 mutations/megabase). In the observation arm, 66 of the 184 (36%) ctDNA-positive patients had shorter disease-free survival [DFS; hazard ratio (HR) = 5.77; 95% confidence interval (CI), 3.84-8.67; P < 0.0001] and overall survival (OS; HR = 5.81; 95% CI, 3.41-9.91; P < 0.0001) compared with ctDNA-negative patients. ctDNA-positive patients had improved DFS and OS with atezolizumab compared with those in observation (DFS HR = 0.56; 95% CI, 0.38-0.83; P = 0.003; OS HR = 0.66; 95% CI, 0.42-1.05). Clinical sensitivity and specificity for detection of postsurgical recurrence were 58% (60/103) and 93% (75/81), respectively. Conclusion: We present a personalized ctDNA monitoring assay utilizing tissue-based FoundationOne® CDx CGP, which is a pragmatic and potentially clinically scalable method that can detect low levels of residual ctDNA in patients with resected, muscle-invasive bladder cancer without germline sampling.

8.
Nature ; 619(7969): 259-268, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438589

ABSTRACT

The continuous improvement in cancer care over the past decade has led to a gradual decrease in cancer-related deaths. This is largely attributed to improved treatment and disease management strategies. Early detection of recurrence using blood-based biomarkers such as circulating tumour DNA (ctDNA) is being increasingly used in clinical practice. Emerging real-world data shows the utility of ctDNA in detecting molecular residual disease and in treatment-response monitoring, helping clinicians to optimize treatment and surveillance strategies. Many studies have indicated ctDNA to be a sensitive and specific biomarker for recurrence. However, most of these studies are largely observational or anecdotal in nature, and peer-reviewed data regarding the use of ctDNA are mainly indication-specific. Here we provide general recommendations on the clinical utility of ctDNA and how to interpret ctDNA analysis in different treatment settings, especially in patients with solid tumours. Specifically, we provide an understanding around the implications, strengths and limitations of this novel biomarker and how to best apply the results in clinical practice.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Clinical Decision-Making , Neoplasms , Humans , Circulating Tumor DNA/blood , Clinical Decision-Making/methods , Peer Review , Neoplasms/diagnosis , Neoplasms/therapy , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/therapy , Biomarkers, Tumor/blood
9.
Cancer Cell ; 41(6): 1091-1102.e4, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37146605

ABSTRACT

Circulating tumor DNA (ctDNA) analysis may improve early-stage breast cancer treatment via non-invasive tumor burden assessment. To investigate subtype-specific differences in the clinical significance and biology of ctDNA shedding, we perform serial personalized ctDNA analysis in hormone receptor (HR)-positive/HER2-negative breast cancer and triple-negative breast cancer (TNBC) patients receiving neoadjuvant chemotherapy (NAC) in the I-SPY2 trial. ctDNA positivity rates before, during, and after NAC are higher in TNBC than in HR-positive/HER2-negative breast cancer patients. Early clearance of ctDNA 3 weeks after treatment initiation predicts a favorable response to NAC in TNBC only. Whereas ctDNA positivity associates with reduced distant recurrence-free survival in both subtypes. Conversely, ctDNA negativity after NAC correlates with improved outcomes, even in patients with extensive residual cancer. Pretreatment tumor mRNA profiling reveals associations between ctDNA shedding and cell cycle and immune-associated signaling. On the basis of these findings, the I-SPY2 trial will prospectively test ctDNA for utility in redirecting therapy to improve response and prognosis.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Neoadjuvant Therapy , Clinical Relevance , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
10.
Cancer ; 129(11): 1723-1734, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36869646

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have substantially improved overall survival in patients with advanced melanoma; however, the lack of biomarkers to monitor treatment response and relapse remains an important clinical challenge. Thus, a reliable biomarker is needed that can risk-stratify patients for disease recurrence and predict response to treatment. METHODS: A retrospective analysis using a personalized, tumor-informed circulating tumor DNA (ctDNA) assay on prospectively collected plasma samples (n = 555) from 69 patients with advanced melanoma was performed. Patients were divided into three cohorts: cohort A (N = 30), stage III patients receiving adjuvant ICI/observation; cohort B (N = 29), unresectable stage III/IV patients receiving ICI therapy; and cohort C (N = 10), stage III/IV patients on surveillance after planned completion of ICI therapy for metastatic disease. RESULTS: In cohort A, compared to molecular residual disease (MRD)-negative patients, MRD-positivity was associated with significantly shorter distant metastasis-free survival (DMFS; hazard ratio [HR], 10.77; p = .01). Increasing ctDNA levels from the post-surgical or pre-treatment time point to after 6 weeks of ICI were predictive of shorter DMFS in cohort A (HR, 34.54; p < .0001) and shorter progression-free survival (PFS) in cohort B (HR, 22; p = .006). In cohort C, all ctDNA-negative patients remained progression-free for a median follow-up of 14.67 months, whereas ctDNA-positive patients experienced disease progression. CONCLUSION: Personalized and tumor-informed longitudinal ctDNA monitoring is a valuable prognostic and predictive tool that may be used throughout the clinical course of patients with advanced melanoma.


Subject(s)
Circulating Tumor DNA , Melanoma , Humans , Circulating Tumor DNA/genetics , Retrospective Studies , Neoplasm Recurrence, Local , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Prognosis , DNA, Neoplasm , Biomarkers, Tumor/genetics
12.
Nat Med ; 29(1): 127-134, 2023 01.
Article in English | MEDLINE | ID: mdl-36646802

ABSTRACT

Despite standard-of-care treatment, more than 30% of patients with resectable colorectal cancer (CRC) relapse. Circulating tumor DNA (ctDNA) analysis may enable postsurgical risk stratification and adjuvant chemotherapy (ACT) treatment decision-making. We report results from GALAXY, which is an observational arm of the ongoing CIRCULATE-Japan study (UMIN000039205) that analyzed presurgical and postsurgical ctDNA in patients with stage II-IV resectable CRC (n = 1,039). In this cohort, with a median follow-up of 16.74 months (range 0.49-24.83 months), postsurgical ctDNA positivity (at 4 weeks after surgery) was associated with higher recurrence risk (hazard ratio (HR) 10.0, P < 0.0001) and was the most significant prognostic factor associated with recurrence risk in patients with stage II or III CRC (HR 10.82, P < 0.001). Furthermore, postsurgical ctDNA positivity identified patients with stage II or III CRC who derived benefit from ACT (HR 6.59, P < 0.0001). The results of our study, a large and comprehensive prospective analysis of ctDNA in resectable CRC, support the use of ctDNA testing to identify patients who are at increased risk of recurrence and are likely to benefit from ACT.


Subject(s)
Colorectal Neoplasms , Neoplasm Recurrence, Local , Humans , Neoplasm Recurrence, Local/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Chemotherapy, Adjuvant , Proportional Hazards Models , Japan , Biomarkers, Tumor/genetics , Neoplasm, Residual/drug therapy
13.
Mol Oncol ; 17(2): 298-311, 2023 02.
Article in English | MEDLINE | ID: mdl-36426653

ABSTRACT

There is an urgent need to identify biomarkers of early response that can accurately predict the benefit of immune checkpoint inhibitors (ICI). Patients receiving durvalumab/tremelimumab had tumor samples sequenced before treatment (baseline) to identify variants for the design of a personalized circulating tumor (ctDNA) assay. ctDNA was assessed at baseline and at 4 and/or 8 weeks into treatment. Correlations between ctDNA changes to radiographic response and overall survival (OS) were made to assess potential clinical benefit. 35/40 patients (87.5%) had personalized ctDNA assays designed, and 29/35 (82.9%) had plasma available for baseline analysis, representing 16 unique solid tumor histologies. As early as 4 weeks after treatment, decline in ctDNA from baseline predicted improved OS (P = 0.0144; HR = 9.98) and ctDNA changes on treatment-supported and refined radiographic response calls. ctDNA clearance at any time through week 8 identified complete responders by a median lead time of 11.5 months ahead of radiographic imaging. ctDNA response monitoring is emerging as a dynamic, personalized biomarker method that may predict survival outcomes in patients with diverse solid tumor histologies, complementing and sometimes preceding standard-of-care imaging assessments.


Subject(s)
Circulating Tumor DNA , Humans , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Mutation
14.
Oncologist ; 28(3): 220-229, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36562592

ABSTRACT

BACKGROUND: Anal squamous cell carcinoma (SCCA) is an uncommon malignancy with a rising incidence that has a high cure rate in its early stages. There is an unmet need for a reliable method to monitor response to treatment and assist in surveillance. Circulating tumor DNA (ctDNA) testing has shown great promise in other solid tumors for monitoring disease progression and detecting relapse in real time. This study aimed to determine the feasibility and use of personalized and tumor-informed ctDNA testing in SCCA. PATIENTS AND METHODS: We analyzed real-world data from 251 patients (817 plasma samples) with stages I-IV SCCA, collected between 11/5/19 and 5/31/22. The tumor genomic landscape and feasibility of ctDNA testing was examined for all patients. The prognostic value of longitudinal ctDNA testing was assessed in patients with clinical follow-up (N = 37). RESULTS: Whole-exome sequencing analysis revealed PIK3CA as the most commonly mutated gene, and no associations between mutations and stage. Anytime ctDNA positivity and higher ctDNA levels (MTM/mL) were associated with metastatic disease (P = .004). For 37 patients with clinical follow-up, median follow-up time was 21.0 months (range: 4.1-67.3) post-diagnosis. For patients with stages I-III disease, anytime ctDNA-positivity after definitive treatment was associated with reduced DFS (HR: 28.0; P = .005). CONCLUSIONS: Our study demonstrates the feasibility of personalized and tumor-informed ctDNA testing as an adjunctive tool in patients with SCCA as well as potential use for detection of molecular/minuteimal residual disease, and relapse during surveillance. Prospective studies are needed to better evaluate the use of ctDNA testing in this indication.


Subject(s)
Anus Neoplasms , Carcinoma, Squamous Cell , Cell-Free Nucleic Acids , Circulating Tumor DNA , Humans , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Neoplasm Recurrence, Local , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , DNA, Neoplasm/genetics , Anus Neoplasms/diagnosis , Anus Neoplasms/genetics , Mutation
15.
JCO Precis Oncol ; 6: e2200420, 2022 12.
Article in English | MEDLINE | ID: mdl-36480779

ABSTRACT

PURPOSE: Circulating tumor DNA (ctDNA) analyses allow for postoperative risk stratification in patients with curatively treated colon and breast cancers. Use of ctDNA in esophagogastric cancers (EGC) is less characterized and could identify high-risk patients who have been treated with curative intent. METHODS: In this retrospective analysis of real-world data, ctDNA levels were analyzed in the preoperative, postoperative, and surveillance settings in patients with EGC using a personalized multiplex polymerase chain reaction-based next-generation sequencing assay. Plasma samples (n = 943) from 295 patients at > 70 institutions were collected before surgery, postoperatively, and/or serially during routine clinical follow-up from September 19, 2019, to February 21, 2022. ctDNA detection was annotated to clinicopathologic features and recurrence-free survival. RESULTS: A total of 295 patients with EGC were analyzed, and 212 patients with stages I-III disease were further explored. Pretreatment ctDNA was detected in 96% (23/24) of patients with preoperative time points. Postoperative ctDNA was detected in 23.5% (16/68) of patients with stage I-III EGC within 16 weeks (molecular residual disease window) after surgery without receiving systemic therapy. ctDNA detection at any time point after surgery (hazard ratio [HR], 23.6; 95% CI, 10.2 to 66.0; P < .0001), within the molecular residual disease window (HR, 10.7; 95% CI, 4.3 to 29.3; P < .0001), and during the surveillance period (HR, 17.7; 95% CI, 7.3 to 50.7; P < .0001) was associated with shorter recurrence-free survival. In multivariable analysis, ctDNA status and clinical stage of disease were independently associated with outcomes. CONCLUSION: Using real-world data, we demonstrate that postoperative tumor-informed ctDNA detection in EGC is feasible and allows for enhanced patient risk stratification and prognostication during curative-intent therapy.


Subject(s)
Circulating Tumor DNA , Esophageal Neoplasms , Stomach Neoplasms , Humans , Circulating Tumor DNA/genetics , Stomach Neoplasms/genetics , Retrospective Studies , Esophageal Neoplasms/genetics
16.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232827

ABSTRACT

A majority of patients with metastatic colorectal cancer (mCRC) experience recurrence post curative-intent surgery. The addition of adjuvant chemotherapy has shown to provide limited survival benefits when applied to all patients. Therefore, a biomarker to assess molecular residual disease (MRD) accurately and guide treatment selection is highly desirable for high-risk patients. This feasibility study evaluated the prognostic value of a tissue comprehensive genomic profiling (CGP)-informed, personalized circulating tumor DNA (ctDNA) assay (FoundationOne®Tracker) (Foundation Medicine, Inc., Cambridge, MA, USA) by correlating MRD status with clinical outcomes. ctDNA analysis was performed retrospectively on plasma samples from 69 patients with resected mCRC obtained at the MRD and the follow-up time point. Tissue CGP identified potentially actionable alterations in 54% (37/69) of patients. MRD-positivity was significantly associated with lower disease-free survival (DFS) (HR: 4.97, 95% CI: 2.67−9.24, p < 0.0001) and overall survival (OS) (HR: 27.05, 95% CI: 3.60−203.46, p < 0.0001). Similarly, ctDNA positive status at the follow-up time point correlated with a marked reduction in DFS (HR: 8.78, 95% CI: 3.59−21.49, p < 0.0001) and OS (HR: 20.06, 95% CI: 2.51−160.25, p < 0.0001). The overall sensitivity and specificity at the follow-up time point were 69% and 100%, respectively. Our results indicate that MRD detection using the tissue CGP-informed ctDNA assay is prognostic of survival outcomes in patients with resected mCRC. The concurrent MRD detection and identification of actionable alterations has the potential to guide perioperative clinical decision-making.


Subject(s)
Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery , Disease Progression , Genomics , Humans , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Neoplasm, Residual/pathology , Retrospective Studies
17.
JCO Precis Oncol ; 6: e2200148, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36170624

ABSTRACT

PURPOSE: Detection of circulating tumor DNA (ctDNA) after neoadjuvant chemotherapy in patients with early-stage breast cancer may allow for early detection of relapse. In this study, we analyzed ctDNA using a personalized, tumor-informed multiplex polymerase chain reaction-based next-generation sequencing assay. METHODS: Plasma samples (n = 157) from 44 patients were collected before neoadjuvant therapy (baseline), after neoadjuvant therapy and before surgery (presurgery), and serially postsurgery including a last follow-up sample. The primary end point was event-free survival (EFS) analyzed using Cox regression models. RESULTS: Thirty-eight (86%), 41 (93%), and 38 (86%) patients had baseline, presurgical, and last follow-up samples, respectively. Twenty patients had hormone receptor-positive/human epidermal growth factor receptor 2-negative, 13 had triple-negative breast cancer, and 11 had human epidermal growth factor receptor 2-positive disease. Baseline ctDNA detection was observed in 22/38 (58%) patients and was significantly associated with Ki67 > 20% (P = .036) and MYC copy-number gain (P = .0025, false discovery rate = 0.036). ctDNA detection at presurgery and at last follow-up was observed in 2/41 (5%) and 2/38 (5%) patients, respectively. Eight relapses (seven distant and one local) were noted (median follow-up 3.03 years [range, 0.39-5.85 years]). After adjusting for pathologic complete response (pCR), ctDNA detection at presurgery and at last follow-up was associated with shorter EFS (hazard ratio [HR], 53; 95% CI, 4.5 to 624; P < .01, and HR, 31; 95% CI, 2.7 to 352; P < .01, respectively). Association between baseline detection and EFS was not observed (HR, 1.4; 95% CI, 0.3 to 5.9; P = .67). CONCLUSION: The presence of ctDNA after neoadjuvant chemotherapy is associated with relapse in early-stage breast cancer, supporting interventional trials for testing the clinical utility of ctDNA monitoring in this setting.


Subject(s)
Circulating Tumor DNA , Triple Negative Breast Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Humans , Ki-67 Antigen , Neoadjuvant Therapy , Neoplasm Recurrence, Local/genetics
18.
Gynecol Oncol ; 167(2): 334-341, 2022 11.
Article in English | MEDLINE | ID: mdl-36117009

ABSTRACT

OBJECTIVE: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. We examined the utility of circulating tumor DNA (ctDNA) as a prognostic biomarker for EOC by assessing its relationship with patient outcome and CA-125, pre-surgically and during post-treatment surveillance. METHODS: Plasma samples were collected from patients with stage I-IV EOC. Cohort A included patients with pre-surgical samples (N = 44, median follow-up: 2.7 years), cohort B and C included: patients with serially collected post-surgically (N = 12) and, during surveillance (N = 13), respectively (median follow-up: 2 years). Plasma samples were analyzed using a tumor-informed, personalized multiplex-PCR NGS assay; ctDNA status and CA-125 levels were correlated with clinical features and outcomes. RESULTS: Genomic profiling was performed on the entire cohort and was consistent with that seen in TCGA. In cohort A, ctDNA-positivity was observed in 73% (32/44) of presurgical samples and was higher in high nuclear grade disease. In cohort B and C, ctDNA was only detected in patients who relapsed (100% sensitivity and specificity) and preceded radiological findings by an average of 10 months. The presence of ctDNA at a single timepoint after completion of surgery +/- adjuvant chemotherapy and serially during surveillance was a strong predictor of relapse (HR:17.6, p = 0.001 and p < 0.0001, respectively), while CA-125 positivity was not (p = 0.113 and p = 0.056). CONCLUSIONS: The presence of ctDNA post-surgically is highly prognostic of reduced recurrence-free survival. CtDNA outperformed CA-125 in identifying patients at highest risk of recurrence. These results suggest that monitoring ctDNA could be beneficial in clinical decision-making for EOC patients.


Subject(s)
Circulating Tumor DNA , Ovarian Neoplasms , Humans , Female , Circulating Tumor DNA/genetics , Carcinoma, Ovarian Epithelial , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/surgery , Biomarkers, Tumor/genetics , Mutation
19.
JCO Precis Oncol ; 6: e2200275, 2022 07.
Article in English | MEDLINE | ID: mdl-35834757
20.
Case Rep Oncol ; 15(2): 473-479, 2022.
Article in English | MEDLINE | ID: mdl-35702676

ABSTRACT

Triple-negative breast cancer (TNBC) is highly aggressive disease that is often refractory to surgery and multiple lines of therapy. Although the repertoire of FDA-approved treatments has expanded, there is an unmet need for biomarkers that can aid in appropriate selection and timing of therapy. We present a case of highly aggressive treatment-resistant TNBC that employed a comprehensive genomic profiling (CGP)-based assay to identify therapeutic targets, followed by longitudinal circulating tumor DNA (ctDNA) testing. For this, a tumor-naïve next-generation sequencing-based targeted panel was used to aid in therapy selection, along with longitudinal personalized and tumor-informed ctDNA testing to monitor tumor response to treatment. Longitudinal ctDNA testing using the tumor-informed assay detected post-surgical molecular residual disease, and rise in ctDNA levels during the surveillance period provided rationale for switching between four lines of therapy. Overall, the combined use of CGP assay with longitudinal ctDNA testing resulted in a potential prolonged survival in this highly aggressive case of TNBC.

SELECTION OF CITATIONS
SEARCH DETAIL
...