Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(8): 4313-4325, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32064480

ABSTRACT

This perspective highlights recent advances in super-resolution, mid-infrared imaging and spectroscopy. It provides an overview of the different near field microscopy techniques developed to address the problem of chemically imaging specimens in the mid-infrared "fingerprint" region of the spectrum with high spatial resolution. We focus on a recently developed far-field optical technique, called infrared photothermal heterodyne imaging (IR-PHI), and discusses the technique in detail. Its practical implementation in terms of equipment used, optical geometries employed, and underlying contrast mechanism are described. Milestones where IR-PHI has led to notable advances in bioscience and materials science are summarized. The perspective concludes with a future outlook for robust and readily accessible high spatial resolution, mid-infrared imaging and spectroscopy techniques.

2.
Proc Natl Acad Sci U S A ; 117(5): 2288-2293, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964821

ABSTRACT

Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm-1 for 2.5-3.9-µm-long NWs reveal a series of resonances due to the Fabry-Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to the m = 3 and m = 4 Fabry-Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry-Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.

3.
J Phys Chem B ; 121(37): 8838-8846, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28741348

ABSTRACT

Infrared (IR) imaging provides chemical-specific information without the need for exogenous labels. Conventional far-field IR imaging techniques are diffraction limited, which means an effective spatial resolution of >5 µm with currently available optics. In this article, we present a novel far-field IR imaging technique based on photothermal heterodyne imaging (IR-PHI). In our version of IR-PHI, an IR pump laser excites the sample, causing a small temperature rise that is detected by a counterpropagating visible probe beam. Images and spectra of several different types of soft matter systems (polystyrene beads, thin polymer films, and single Escherichia coli bacterial cells) are presented to demonstrate the sensitivity and versatility of the technique. Importantly, the spatial resolution in the IR-PHI measurements is determined by the visible probe beam: a spatial resolution of 0.3 µm was achieved with a 0.53 µm probe wavelength and a high numerical aperture focusing objective. This is the highest spatial resolution reported to date for far-field IR imaging. Analysis of the experiments shows that for polymer beads in a dry environment, the magnitude of the IR-PHI signal is determined by the scattering cross section of the nano-object at the probe wavelength. This is in contrast to conventional PHI experiments in a heat-transfer medium, where the signal scales as the absorption cross section. This different scaling can be understood through the optical theorem. Our analysis also shows that both thermal expansion and changes in the refractive index of the material are important and that these two effects, in general, counteract each other.

4.
J Org Chem ; 81(1): 77-88, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26639442

ABSTRACT

An efficient and practical protocol for completely regioselective and highly stereoselective synthesis of vinyldiazaphosphonates from N-heterocyclic phosphine (NHP) and allenes via phospha-Michael/intramolecular nucleophilic substitution reaction has been developed. This transformation enabled the synthesis of valuable densely functionalized vinyldiazaphosphonates with a ß-, γ-unsaturated ester moiety under mild reaction conditions. Synthetic utility of vinyldiazaphosphonates was demonstrated by a series of synthetic manipulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...