Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 399: 130636, 2024 May.
Article in English | MEDLINE | ID: mdl-38548032

ABSTRACT

Biofuel production from microalgae has been greatly restricted by low biomass productivity and long-term photosynthetic efficacy. Here, a novel strategy for selecting high-growing, stress-resistant algal strains with high photosynthetic capacity was proposed based on biocompatible extracellular polymeric substances (EPS) probes with aggregation-induced emission (AIE) properties. Specifically, AIE active EPS probes were synthesized for in-situ long-term monitoring of the EPS productivity at different algal growth stages. By coupling the AIE-based fluorescent techniques, algal cells were classified into four diverse populations based on their chlorophyll and EPS signals. Mechanistic studies on the sorted algal cells revealed their remarkable stress resistance and high expression of cell division, biopolymer production and photosynthesis-related genes. The sorted and subcultured algal cells consistently exhibited relatively higher growth rates and photosynthetic capacities, resulting in an increased (1.2 to 1.8-fold) algal biomass production, chlorophyll, and lipids. This study can potentially open new strategies to boost microalgal-based biofuel production.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Biofuels , Extracellular Polymeric Substance Matrix/metabolism , Bioprospecting , Chlorophyll/metabolism , Microalgae/metabolism
2.
J Drug Target ; 32(3): 287-299, 2024 12.
Article in English | MEDLINE | ID: mdl-38252035

ABSTRACT

Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.


Subject(s)
Metal Nanoparticles , Nanotubes, Carbon , Neoplasms , Humans , Nanotubes, Carbon/chemistry , Metal Nanoparticles/chemistry , Silver , Neoplasms/diagnosis , Neoplasms/drug therapy , Drug Delivery Systems
3.
J Integr Neurosci ; 12(2): 285-97, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23869866

ABSTRACT

In in vitro mouse hippocampal slices we investigated whether cyclocreatine is capable of entering brain cells independently of the creatine transporter and if it reproduces the neuroprotective effect of creatine. Our study shows that cyclocreatine does not increase the creatine content, but is taken up as such and then phosphorylated to phosphocyclocreatine. This uptake is largely blocked by inactivation of the creatine transporter, however some cyclocreatine is taken up and posphorylated even after such inactivation. Thus, cyclocreatine sets up a cyclocreatine/phosphocyclocreatine system in the brain independently of the creatine transporter. Cyclocreatine did not delay the disappearance of the evoked synaptic potentials during anoxia in hippocampal slices, unlike creatine which exerts a neuroprotective effect.


Subject(s)
Creatinine/analogs & derivatives , Hippocampus/cytology , Hippocampus/metabolism , Neurons/physiology , Action Potentials/physiology , Animals , Cell Hypoxia/physiology , Chromatography, High Pressure Liquid , Creatinine/metabolism , Guanidines/metabolism , In Vitro Techniques , Male , Mice , Mice, Inbred ICR , Phosphocreatine/metabolism , Phosphorylation , Propionates/metabolism , Statistics, Nonparametric , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...