Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 10(1): 15292, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32943669

ABSTRACT

The molecular engineering of organometallic complexes has recently attracted renewed interest on account of their potential technological applications for optoelectronics in general and optical data storage. The transition metal which induces control of enhanced nonlinear optical properties of functionalized organometallic complexes versus not only the intensity but also the polarization of the incident laser beam is original and important for all optical switching. This makes organometallic complexes valuable and suitable candidates for nonlinear optical applications. In the present work, we report the synthesis and full characterization of four organometallic complexes consisting of N, N-dibutylamine and azobenzene fragments but differ by auxiliary alkynyl ligands or metal cations. Thus, a ferrocenyl derivative 1 and three ruthenium complexes 2-4 have been prepared. The nonlinear optical properties of the four new azo-based ruthenium and iron organometallic complexes in the solid state, using polymethylmethacrylate as matrix, have been thoroughly studied. This concept is extended to computing the HOMO and LUMO energy levels of the considered complexes, dipole moment, first and second order hyperpolarizabilities using the 6-31 + G(d,p) + LANL2DZ mixed basis set. The second and third nonlinear optical properties of the resulting polymer composites were obtained by measuring SHG and THG response by means of the Maker fringe technique using a laser generating at 1,064 nm with a 30 ps pulse duration. The values of the second and third order NLO susceptibilities of the four organometallic complexes were found to be higher than the common references used. Theoretical calculation shows that the large first and second order hyperpolarizablities are caused by strong intramolecular charge transfer between the transition metal parts and the ligands though a conjugated transmitter. These results indicate that the present organometallic complexes are valuable candidates for optoelectronic and photonic applications.

3.
Nano Lett ; 17(5): 3215-3224, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28358215

ABSTRACT

The π-π interactions between organic molecules are among the most important parameters for optimizing the transport and optical properties of organic transistors, light-emitting diodes, and (bio-) molecular devices. Despite substantial theoretical progress, direct experimental measurement of the π-π electronic coupling energy parameter t has remained an old challenge due to molecular structural variability and the large number of parameters that affect the charge transport. Here, we propose a study of π-π interactions from electrochemical and current measurements on a large array of ferrocene-thiolated gold nanocrystals. We confirm the theoretical prediction that t can be assessed from a statistical analysis of current histograms. The extracted value of t ≈35 meV is in the expected range based on our density functional theory analysis. Furthermore, the t distribution is not necessarily Gaussian and could be used as an ultrasensitive technique to assess intermolecular distance fluctuation at the subangström level. The present work establishes a direct bridge between quantum chemistry, electrochemistry, organic electronics, and mesoscopic physics, all of which were used to discuss results and perspectives in a quantitative manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...