Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.645
Filter
2.
Circ Arrhythm Electrophysiol ; 17(7): e012570, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012930

ABSTRACT

BACKGROUND: Patients with refractory, symptomatic left ventricular (LV) mid-cavity obstructive (LVMCO) hypertrophic cardiomyopathy have few therapeutic options. Right ventricular pacing is associated with modest hemodynamic and symptomatic improvement, and LV pacing pilot data suggest therapeutic potential. We hypothesized that site-specific pacing would reduce LVMCO gradients and improve symptoms. METHODS: Patients with symptomatic-drug-refractory LVMCO were recruited for a randomized, blinded trial of personalized prescription of pacing (PPoP). Multiple LV and apical right ventricular pacing sites were assessed during an invasive hemodynamic study of multisite pacing. Patient-specific pacing-site and atrioventricular delays, defining PPoP, were selected on the basis of LVMCO gradient reduction and acceptable pacing parameters. Patients were randomized to 6 months of active PPoP or backup pacing in a crossover design. The primary outcome examined invasive gradient change with best-site pacing. Secondary outcomes assessed quality of life and exercise following randomization to PPoP. RESULTS: A total of 17 patients were recruited; 16 of whom met primary end points. Baseline New York Heart Association was 3±0.6, despite optimal medical therapy. Hemodynamic effects were assessed during pacing at the right ventricular apex and at a mean of 8 LV sites. The gradients in all 16 patients fell with pacing, with maximum gradient reduction achieved via LV pacing in 14 (88%) patients and right ventricular apex in 2. The mean baseline gradient of 80±29 mm Hg fell to 31±21 mm Hg with best-site pacing, a 60% reduction (P<0.0001). One cardiac vein perforation occurred in 1 case, and 15 subjects entered crossover; 2 withdrawals occurred during crossover. Of the 13 completing crossover, 9 (69%) chose active pacing in PPoP configuration as preferred setting. PPoP was associated with improved 6-minute walking test performance (328.5±99.9 versus 285.8±105.5 m; P=0.018); other outcome measures also indicated benefit with PPoP. CONCLUSIONS: In a randomized placebo-controlled trial, PPoP reduces obstruction and improves exercise performance in severely symptomatic patients with LVMCO. REGISTRATION: URL: https://clinicaltrials.gov/study; Unique Identifier: NCT03450252.


Subject(s)
Cardiac Pacing, Artificial , Cardiomyopathy, Hypertrophic , Cross-Over Studies , Ventricular Function, Left , Humans , Male , Female , Cardiac Pacing, Artificial/methods , Middle Aged , Cardiomyopathy, Hypertrophic/therapy , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/diagnosis , Treatment Outcome , Aged , Quality of Life , Time Factors , Hemodynamics , Ventricular Outflow Obstruction/physiopathology , Ventricular Outflow Obstruction/therapy , Ventricular Outflow Obstruction/diagnosis , Exercise Tolerance , Ventricular Function, Right , Recovery of Function
3.
J Org Chem ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39059413

ABSTRACT

Hydrofluoroalkylation of alkenes with organozinc reagents under photocatalytic conditions is described. The fluorinated alkyl radicals were generated from organozincs by the single electron oxidation of the carbon-zinc bond. The radical addition step is followed either by hydrogen atom transfer for unactivated olefins or by a reduction/protonation sequence for strongly accepting arylidenemalononitriles.

4.
Biomedicines ; 12(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062142

ABSTRACT

Dose-intensive cytostatic therapy and antibiotic treatment in allogeneic hematopoietic stem cell transplantation (allo-HSCT) cause severe abnormalities in a composition of gut microbiota as well as the emergence of antibiotic resistance. The data on the longitudinal recovery of major bacterial phyla and the expansion of genes associated with antibiotic resistance are limited. We collected regular stool samples during the first year after allo-HSCT from 12 adult patients with oncohematological disorders after allo-HSCT and performed 16SrRNA sequencing, multiplex PCR, conventional bacteriology and CHROMagar testing. We observed a decline in Shannon microbiota diversity index as early as day 0 of allo-HSCT (p = 0.034) before any administration of antibiotics, which persisted up to 1 year after transplantation, when the Shannon index returned to pre-transplant levels (p = 0.91). The study confirmed the previously shown decline in Bacillota (Firmicutes) genera and the expansion of E. coli/Shigella, Klebsiella and Enterococci. The recovery of Firmicutes was slower than that of other phyla and occurred only a year post-transplant. A positive correlation was observed between the expansion of E. coli/Shigella genera and blaKPC, blaCTX-M-1 and blaTEM (p < 0.001), Klebsiella spp. and blaOXA-48-like, blaNDM, blaCTX-M-1, blaTEM, and blaSHV (p < 0.001), Pseudomonas spp. and blaNDM (p = 0.002), Enterococcus spp. and blaOXA-48-like, blaNDM, blaCTX-M-1, blaSHV (p < 0.01). The correlation was observed between the expansion of Enterobacterales and and carbapenemase-positive CHROMagar samples (p < 0.001). Samples positive for carbapenem-resitant bacteria were at their maximum levels on day +30, and were gradually diminishing one year after allo-HSCT. From day +30 to +60, all isolated K. pneumoniae strains in fecal samples proved to be resistant to the main antibiotic groups (carbapenems, aminoglycosides, fluoroquinolones, third-generation cephalosporins). One year after HSCT, we documented the spontaneous decolonization of K. pneumoniae. The sensitivity of molecular biology techniques in the search for total and antibiotic-resistant Klebsiella seems to be superior to common bacteriological cultures. Future studies should be focused on searching for novel approaches to the efficient reconstitution and/or maintenance of strictly anaerobic microbiota in oncological patients.

5.
J Phys Chem B ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031121

ABSTRACT

In the domain of computer-aided drug design, achieving precise and accurate estimates of ligand-protein binding is paramount in the context of screening extensive drug libraries and performing ligand optimization. A fundamental aspect of the SILCS (site identification by ligand competitive saturation) methodology lies in the generation of comprehensive 3D free-energy functional group affinity maps (FragMaps), encompassing the entirety of the target molecule structure. These FragMaps offer an intricate landscape of functional group affinities across the protein, bilayer, or RNA, acting as the basis for subsequent SILCS-Monte Carlo (MC) simulations wherein ligands are docked to the target molecule. To augment the efficiency and breadth of ligand sampling capabilities, we implemented an improved SILCS-MC methodology. By harnessing the parallel computing capability of GPUs, our approach facilitates concurrent calculations over multiple ligands and binding sites, markedly enhancing the computational efficiency. Moreover, the integration of a genetic algorithm (GA) with MC allows us to employ an evolutionary approach to perform ligand sampling, assuring enhanced convergence characteristics. In addition, the potential utility of parallel tempering (PT) to improve sampling was investigated. Implementation of SILCS-MC on GPU architecture is shown to accelerate the speed of SILCS-MC calculations by over 2-orders of magnitude. Use of GA and PT yield improvements over Markov-chain MC, increasing the precision of the resultant docked orientations and binding free energies, though the extent of improvements is relatively small. Accordingly, significant improvements in speed are obtained through the GPU implementation with minor improvements in the precision of the docking obtained via the tested GA and PT algorithms.

6.
Gait Posture ; 113: 246-251, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38964048

ABSTRACT

BACKGROUND: No in-shoe systems, measuring both components of plantar load (plantar pressure and shear stress) are available for use in patients with diabetes. The STAMPS (STrain Analysis and Mapping of the Plantar Surface) system utilises digital image correlation (DIC) to determine the strain sustained by a deformable insole, providing a more complete understanding of plantar shear load at the foot-surface interface. RESEARCH QUESTIONS: What is the normal range and pattern of strain at the foot-surface interface within a healthy population as measured by the STAMPS system? Is STAMPS a valid tool to measure the effects of plantar load? METHODS: A cross-sectional study of healthy participants was undertaken. Healthy adults without foot pathology or diabetes were included. Participants walked 20 steps with the STAMPS insole in a standardised shoe. Participants also walked 10 m with the Novel Pedar® plantar pressure measurement insole within the standardised shoe. Both measurements were repeated three times. Outcomes of interest were global and regional values for peak resultant strain (SMAG) and peak plantar pressure (PPP). RESULTS: In 18 participants, median peak SMAG and PPP were 35.01 % and 410.6kPa respectively. The regions of the hallux and heel sustained the highest SMAG (29.31 % (IQR 24.56-31.39) and 20.50 % (IQR 15.59-24.12) respectively) and PPP (344.8kPa (IQR 268.3 - 452.5) and 279.3kPa (IQR 231.3-302.1) respectively). SMAG was moderately correlated with PPP (r= 0.65, p < 0.001). Peak SMAG was located at the hallux in 55.6 % of participants, at the 1st metatarsal head (MTH) in 16.7 %, the heel in 16.7 %, toes 3-5 in 11.1 % and the MTH2 in 5.6 %. SIGNIFICANCE: The results demonstrate the STAMPS system is a valid tool to measure plantar strain. Further studies are required to investigate the effects of elevated strain and the relationship with diabetic foot ulcer formation.

7.
Article in English | MEDLINE | ID: mdl-38965085

ABSTRACT

RATIONALE: The potent synthetic opioid fentanyl, and its analogs, continue to drive opioid-related overdoses. Although the pharmacology of fentanyl is well characterized, there is little information about the reinforcing effects of clandestine fentanyl analogs (FAs). OBJECTIVES: Here, we compared the effects of fentanyl and the FAs acetylfentanyl, butyrylfentanyl, and cyclopropylfentanyl on drug self-administration in male and female rats. These FAs feature chemical modifications at the carbonyl moiety of the fentanyl scaffold. METHODS: Sprague-Dawley rats fitted with intravenous jugular catheters were placed in chambers containing two nose poke holes. Active nose poke responses resulted in drug delivery (0.2 mL) over 2 s on a fixed-ratio 1 schedule, followed by a 20 s timeout. Acquisition doses were 0.01 mg/kg/inj for fentanyl and cyclopropylfentanyl, and 0.03 mg/kg/inj for acetylfentanyl and butyrylfentanyl. After 10 days of acquisition, dose-effect testing was carried out, followed by 10 days of saline extinction. RESULTS: Self-administration of fentanyl and FAs was acquired by both male and female rats, with no sex differences in acquisition rate. Fentanyl and FAs showed partial inverted-U dose-effect functions; cyclopropylfentanyl and fentanyl had similar potency, while acetylfentanyl and butyrylfentanyl were less potent. Maximal response rates were similar across drugs, with fentanyl and cyclopropylfentanyl showing maximum responding at 0.001 mg/kg/inj, acetylfentanyl at 0.01 mg/kg/inj, and butyrylfentanyl at 0.003 mg/kg/inj. No sex differences were detected for drug potency, efficacy, or rates of extinction. CONCLUSIONS: Our work provides new evidence that FAs display significant abuse liability in male and female rats, which suggests the potential for compulsive use in humans.

8.
Nat Neurosci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030342

ABSTRACT

Across systems, higher-order interactions between components govern emergent dynamics. Here we tested whether contextual threat memory retrieval in mice relies on higher-order interactions between dorsal CA1 hippocampal neurons requiring learning-induced dendritic spine plasticity. We compared population-level Ca2+ transients as wild-type mice (with intact learning-induced spine plasticity and memory) and amnestic mice (TgCRND8 mice with high levels of amyloid-ß and deficits in learning-induced spine plasticity and memory) were tested for memory. Using machine-learning classifiers with different capacities to use input data with complex interactions, our findings indicate complex neuronal interactions in the memory representation of wild-type, but not amnestic, mice. Moreover, a peptide that partially restored learning-induced spine plasticity also restored the statistical complexity of the memory representation and memory behavior in Tg mice. These findings provide a previously missing bridge between levels of analysis in memory research, linking receptors, spines, higher-order neuronal dynamics and behavior.

9.
Front Bioeng Biotechnol ; 12: 1411680, 2024.
Article in English | MEDLINE | ID: mdl-38988863

ABSTRACT

Introduction: The development of next-generation tissue-engineered medical devices such as tissue-engineered vascular grafts (TEVGs) is a leading trend in translational medicine. Microscopic examination is an indispensable part of animal experimentation, and histopathological analysis of regenerated tissue is crucial for assessing the outcomes of implanted medical devices. However, the objective quantification of regenerated tissues can be challenging due to their unusual and complex architecture. To address these challenges, research and development of advanced ML-driven tools for performing adequate histological analysis appears to be an extremely promising direction. Methods: We compiled a dataset of 104 representative whole slide images (WSIs) of TEVGs which were collected after a 6-month implantation into the sheep carotid artery. The histological examination aimed to analyze the patterns of vascular tissue regeneration in TEVGs in situ. Having performed an automated slicing of these WSIs by the Entropy Masker algorithm, we filtered and then manually annotated 1,401 patches to identify 9 histological features: arteriole lumen, arteriole media, arteriole adventitia, venule lumen, venule wall, capillary lumen, capillary wall, immune cells, and nerve trunks. To segment and quantify these features, we rigorously tuned and evaluated the performance of six deep learning models (U-Net, LinkNet, FPN, PSPNet, DeepLabV3, and MA-Net). Results: After rigorous hyperparameter optimization, all six deep learning models achieved mean Dice Similarity Coefficients (DSC) exceeding 0.823. Notably, FPN and PSPNet exhibited the fastest convergence rates. MA-Net stood out with the highest mean DSC of 0.875, demonstrating superior performance in arteriole segmentation. DeepLabV3 performed well in segmenting venous and capillary structures, while FPN exhibited proficiency in identifying immune cells and nerve trunks. An ensemble of these three models attained an average DSC of 0.889, surpassing their individual performances. Conclusion: This study showcases the potential of ML-driven segmentation in the analysis of histological images of tissue-engineered vascular grafts. Through the creation of a unique dataset and the optimization of deep neural network hyperparameters, we developed and validated an ensemble model, establishing an effective tool for detecting key histological features essential for understanding vascular tissue regeneration. These advances herald a significant improvement in ML-assisted workflows for tissue engineering research and development.

11.
Cureus ; 16(6): e61736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975534

ABSTRACT

BACKGROUND:  To describe the surgical technique of non-compressive intramedullary threaded nail (IMTN) fixation of distal ulnar neck fractures and present the clinical and radiographic outcomes of four patients treated with this novel technique. METHODS: At a single Level 1 Trauma Center, a retrospective review was conducted for patients with distal ulnar neck fractures treated with retrograde IMTN between 2022 and 2024. Exclusion criteria included inadequate follow-up. A single surgeon performed all procedures using percutaneous retrograde IMTN fixation through the central disc of the triangular fibrocartilage complex (TFCC). Patients initiated a range of motion (ROM) protocol two weeks post-operatively. Post-operative radiographic images were used to calculate the ratio of IMTN diameter to the distal ulnar medullary isthmus diameter proximal to the fracture site. Radiographic changes in displacement, angulation, and ulnar variance were calculated between the first and last follow-up radiographs. Functional outcomes including grip strength and ROM were collected. RESULTS: Four patients with distal ulnar neck fractures were treated with retrograde IMTN between 2022 and 2024. They were followed for a minimum of three months post-operatively. All were female with an average age of 65 years. All distal ulna fractures were associated with operatively treated intraarticular distal radius fractures. All patients were treated with 75 mm length and 4.5 mm diameter IMTNs. IMTN-to-Isthmus ratio was greater than 60% in all cases. Average radiographic displacement and angulation were unchanged at the final follow-up. The average ulnar variance increased by 1.2 mm. At the final follow-up, there were no post-operative complications. No cases demonstrated ulnar-sided wrist pain, nonunion, or required revision surgery. CONCLUSIONS: Retrograde IMTN fixation is a novel surgical technique for the treatment of distal ulnar neck fractures. We found limited but promising post-operative radiographic and functional outcomes in our patients without reported ulnar-sided wrist pain, nonunion, or need for hardware removal.

12.
medRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38978666

ABSTRACT

IMPORTANCE: Improving the efficiency of interim assessments in phase III trials should reduce trial costs, hasten the approval of efficacious therapies, and mitigate patient exposure to disadvantageous randomizations. OBJECTIVE: We hypothesized that in silico Bayesian early stopping rules improve the efficiency of phase III trials compared with the original frequentist analysis without compromising overall interpretation. DESIGN: Cross-sectional analysis. SETTING: 230 randomized phase III oncology trials enrolling 184,752 participants. PARTICIPANTS: Individual patient-level data were manually reconstructed from primary endpoint Kaplan-Meier curves. INTERVENTIONS: Trial accruals were simulated 100 times per trial and leveraged published patient outcomes such that only the accrual dynamics, and not the patient outcomes, were randomly varied. MAIN OUTCOMES AND MEASURES: Early stopping was triggered per simulation if interim analysis demonstrated ≥ 85% probability of minimum clinically important difference/3 for efficacy or futility. Trial-level early closure was defined by stopping frequencies ≥ 0.75. RESULTS: A total of 12,451 simulations (54%) met early stopping criteria. Trial-level early stopping frequency was highly predictive of the published outcome (OR, 7.24; posterior probability of association, >99.99%; AUC, 0.91; P < 0.0001). Trial-level early closure was recommended for 82 trials (36%), including 62 trials (76%) which had performed frequentist interim analysis. Bayesian early stopping rules were 96% sensitive (95% CI, 91% to 98%) for detecting trials with a primary endpoint difference, and there was a high level of agreement in overall trial interpretation (Bayesian Cohen's κ, 0.95; 95% CrI, 0.92 to 0.99). However, Bayesian interim analysis was associated with >99.99% posterior probability of reducing patient enrollment requirements ( P < 0.0001), with an estimated cumulative enrollment reduction of 20,543 patients (11%; 89 patients averaged equally over all studied trials) and an estimated cumulative cost savings of 851 million USD (3.7 million USD averaged equally over all studied trials). CONCLUSIONS AND RELEVANCE: Bayesian interim analyses may improve randomized trial efficiency by reducing enrollment requirements without compromising trial interpretation. Increased utilization of Bayesian interim analysis has the potential to reduce costs of late-phase trials, reduce patient exposures to ineffective therapies, and accelerate approvals of effective therapies. KEY POINTS: Question: What are the effects of Bayesian early stopping rules on the efficiency of phase III randomized oncology trials?Findings: Individual-patient level outcomes were reconstructed for 184,752 patients from 230 trials. Compared with the original interim analysis strategy, in silico Bayesian interim analysis reduced patient enrollment requirements and preserved the original trial interpretation. Meaning: Bayesian interim analysis may improve the efficiency of conducting randomized trials, leading to reduced costs, reduced exposure of patients to disadvantageous treatments, and accelerated approval of efficacious therapies.

13.
Phys Rev Lett ; 132(25): 256601, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38996254

ABSTRACT

Despite recent experimental developments, the topological order of the fractional quantum Hall state at filling ν=5/2 remains an outstanding question. We study conductance and shot noise in a quantum point contact device in the charge-equilibrated regime and show that, among Pfaffian, particle-hole Praffian, and anti-Pfaffian (aPf) candidate states, the hole-conjugate aPf state is unique in that it can produce a conductance plateau at G=(7/3)e^{2}/h by two fundamentally distinct mechanisms. We demonstrate that these mechanisms can be distinguished by shot noise measurements on the plateaus. We also determine distinct features of the conductance of the aPf state in the coherent regime. Our results can be used to experimentally single out the aPf order.

14.
Chin Med J Pulm Crit Care Med ; 2(2): 80-87, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006829

ABSTRACT

Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia. Pro-inflammatory agonists such as histamine, thrombin, bradykinin, interleukin 1ß, tumor necrosis factor α, vascular endothelial growth factor, angiopoietin-2, and platelet-activating factor, as well as bacterial toxins and reactive oxygen species, cause dynamic changes in cytoskeletal structure, adherens junction disorganization, and detachment of vascular endothelial cadherin (VE-cadherin) from the actin cytoskeleton, leading to an increase in endothelial permeability. Endothelial interactions with leukocytes, platelets, and coagulation enhance the inflammatory response. Moreover, inflammatory infiltration and the associated generation of pro-inflammatory cytokines during infection cause EC death, resulting in further compromise of the structural integrity of lung endothelial barrier. Despite the use of potent antibiotics and aggressive intensive care support, the mortality of ALI is still high, because the mechanisms of pulmonary EC barrier disruption are not fully understood. In this review, we summarized recent advances in the studies of endothelial cytoskeletal reorganization, inter-endothelial junctions, endothelial inflammation, EC death, and endothelial repair in ALI and ARDS, intending to shed some light on the potential diagnostic and therapeutic targets in the clinical management of the disease.

15.
Sci Adv ; 10(28): eadm8206, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996022

ABSTRACT

Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratumoral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular proliferation, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI technology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.


Subject(s)
Disease Progression , Gene Expression Regulation, Neoplastic , Melanoma , Single-Cell Analysis , Humans , Melanoma/pathology , Melanoma/genetics , Melanoma/metabolism , Melanoma/mortality , Prognosis , Single-Cell Analysis/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Tumor Microenvironment , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Male , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/mortality , Gene Expression Profiling
16.
Article in English | MEDLINE | ID: mdl-39043491

ABSTRACT

Nearly one-third of patients who undergo surgical aortic valve replacement (SAVR) or transcatheter aortic valve replacement (TAVR) develop hypoattenuated leaflet thickening (HALT) within a year. HALT typically represents subclinical leaflet thrombosis in asymptomatic patients, and as a result it often is detected incidentally. However, HALT also may worsen in severity, resulting in leaflet immobility and/or valve deterioration. The clinical significance of HALT is a topic of ongoing debate, and currently there is no consensus on the screening and management of HALT in patients following TAVR or SAVR. This review provides a comprehensive evaluation of the available evidence on risk factors, preventative measures, treatment, and prognosis for this growing patient cohort.

17.
Nat Commun ; 15(1): 4998, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866830

ABSTRACT

Collective spin-wave excitations, magnons, are promising quasi-particles for next-generation spintronics devices, including platforms for information transfer. In a quantum Hall ferromagnets, detection of these charge-neutral excitations relies on the conversion of magnons into electrical signals in the form of excess electrons and holes, but if the excess electron and holes are equal, detecting an electrical signal is challenging. In this work, we overcome this shortcoming by measuring the electrical noise generated by magnons. We use the symmetry-broken quantum Hall ferromagnet of the zeroth Landau level in graphene to launch magnons. Absorption of these magnons creates excess noise above the Zeeman energy and remains finite even when the average electrical signal is zero. Moreover, we formulate a theoretical model in which the noise is produced by equilibration between edge channels and propagating magnons. Our model also allows us to pinpoint the regime of ballistic magnon transport in our device.

18.
J Lipid Atheroscler ; 13(2): 166-183, 2024 May.
Article in English | MEDLINE | ID: mdl-38826184

ABSTRACT

Objective: The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods: The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results: In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion: The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.

19.
JTCVS Tech ; 25: 1-7, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899072

ABSTRACT

Objective: To investigate the effect of graft sizing on valve performance in valve-sparing aortic root replacement for bicuspid aortic valve. Methods: In addition to a diseased control model, 3 representative groups-free-edge length to aortic/graft diameter (FELAD) ratio <1.3, 1.5 to 1.64, and >1.7-were replicated in explanted porcine aortic roots (n = 3) using straight grafts sized respective to the native free-edge length. They were run on a validated ex vivo univentricular system under physiological parameters for 20 cycles. All groups were tested within the same aortic root to minimize inter-root differences. Outcomes included transvalvular gradient, regurgitation fraction, and orifice area. Linear mixed effects model and pairwise comparisons were employed to compare outcomes across groups. Results: The diseased control had mean transvalvular gradient 10.9 ± 6.30 mm Hg, regurgitation fraction 32.5 ± 4.91%, and orifice area 1.52 ± 0.12 cm2. In ex vivo analysis, all repair groups had improved regurgitation compared with control (P < .001). FELAD <1.3 had the greatest amount of regurgitation among the repair groups (P < .001) and 1.5-1.64 the least (P < .001). FELAD <1.3 and >1.7 exhibited greater mean gradient compared with both control and 1.5 to 1.64 (P < .001). Among the repair groups, 1.5 to 1.64 had the largest orifice area, and >1.7 the smallest (P < .001). Conclusions: For a symmetric bicuspid aortic valve, performance after valve-sparing aortic root replacement shows a bimodal distribution across graft size. As the FELAD ratio departs from 1.5 to 1.64 in either direction, significant increases in transvalvular gradient are observed. FELAD <1.3 may also result in suboptimal improvement of baseline regurgitation.

20.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892189

ABSTRACT

High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150-200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still impedes their distribution. Self-supporting anodes based on carbon nanofibers (CNF) are prepared using the electrospinning method from a polyacrylonitrile solution containing zirconium salt, followed by pyrolysis. After the deposition of Pt nanoparticles on the CNF surface, the composite anodes are obtained. A new self-phosphorylating polybenzimidazole of the 6F family is applied to the Pt/CNF surface to improve the triple-phase boundary, gas transport, and proton conductivity of the anode. This polymer coating ensures a continuous interface between the anode and proton-conducting membrane. The polymer is investigated using CO2 adsorption, TGA, DTA, FTIR, GPC, and gas permeability measurements. The anodes are studied using SEM, HAADF STEM, and CV. The operation of the membrane-electrode assembly in the H2/air HT-PEMFC shows that the application of the new PBI of the 6F family with good gas permeability as a coating for the CNF anodes results in an enhancement of HT-PEMFC performance, reaching 500 mW/cm2 at 1.3 A/cm2 (at 180 °C), compared with the previously studied PBI-O-PhT-P polymer.


Subject(s)
Benzimidazoles , Electrodes , Benzimidazoles/chemistry , Polymers/chemistry , Nanofibers/chemistry , Electric Power Supplies , Membranes, Artificial , Electrolytes/chemistry , Acrylic Resins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...