Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Comput Med Imaging Graph ; 116: 102399, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38833895

ABSTRACT

Lung cancer screening (LCS) using annual computed tomography (CT) scanning significantly reduces mortality by detecting cancerous lung nodules at an earlier stage. Deep learning algorithms can improve nodule malignancy risk stratification. However, they have typically been used to analyse single time point CT data when detecting malignant nodules on either baseline or incident CT LCS rounds. Deep learning algorithms have the greatest value in two aspects. These approaches have great potential in assessing nodule change across time-series CT scans where subtle changes may be challenging to identify using the human eye alone. Moreover, they could be targeted to detect nodules developing on incident screening rounds, where cancers are generally smaller and more challenging to detect confidently. Here, we show the performance of our Deep learning-based Computer-Aided Diagnosis model integrating Nodule and Lung imaging data with clinical Metadata Longitudinally (DeepCAD-NLM-L) for malignancy prediction. DeepCAD-NLM-L showed improved performance (AUC = 88%) against models utilizing single time-point data alone. DeepCAD-NLM-L also demonstrated comparable and complementary performance to radiologists when interpreting the most challenging nodules typically found in LCS programs. It also demonstrated similar performance to radiologists when assessed on out-of-distribution imaging dataset. The results emphasize the advantages of using time-series and multimodal analyses when interpreting malignancy risk in LCS.

2.
Brain ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820112

ABSTRACT

Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: Amyloid (A), Tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, where each of the biomarkers can be either positive (+) or negative (-). Over the past decades genome wide association studies have implicated about 90 different loci involved with the development of late onset Alzheimer's disease. Here we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we employed Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex, and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed significant effect (HR=2.88; 95% CI: 1.70-4.89; P<0.001), while polygenic risk did not (HR=1.09; 95% CI: 0.84-1.42; P=0.53). Conversely, for the transition from A+T- to A+T+, the APOE-e4 burden contribution was reduced (HR=1.62 95% CI: 1.05-2.51; P=0.031), while the polygenic risk showed an increased contribution (HR=1.73; 95% CI:1.27-2.36; P<0.001). The marginal APOE effect was driven by e4 homozygotes (HR=2.58; 95% CI: 1.05-6.35; P=0.039) as opposed to e4 heterozygotes (HR=1.74; 95% CI: 0.87-3.49; P=0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of transition between ATN stages, a better understanding of the molecular processes leading to Alzheimer's disease as well as opening therapeutic windows for targeted interventions.

3.
Sci Rep ; 14(1): 12357, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811636

ABSTRACT

Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both pFDR < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, pFDR = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.


Subject(s)
Heart Defects, Congenital , Magnetic Resonance Imaging , Placenta , Placentation , Humans , Female , Pregnancy , Heart Defects, Congenital/diagnostic imaging , Adult , Placenta/diagnostic imaging , Placenta/pathology , Magnetic Resonance Imaging/methods , Case-Control Studies
4.
Dev Psychol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512192

ABSTRACT

Prenatal alcohol exposure (PAE) affects neurodevelopment in over 59 million individuals globally. Prior studies using dichotomous categorization of alcohol use and comorbid substance exposures provide limited knowledge of how prenatal alcohol specifically impacts early human neurodevelopment. In this longitudinal cohort study from Cape Town, South Africa, PAE is measured continuously-characterizing timing, dose, and drinking patterns (i.e., binge drinking). High-density electroencephalography (EEG) during a visual-evoked potential (VEP) task was collected from infants aged 8 to 52 weeks with prenatal exposure exclusively to alcohol and matched on sociodemographic factors to infants with no substance exposure in utero. First trimester alcohol exposure related to altered timing of the P1 VEP component over the first 6 months postnatally, and first trimester binge drinking exposure altered timing of the P1 VEP components such that increased exposure was associated with longer VEP latencies while increasing age was related to shorter VEP latencies (n = 108). These results suggest alcohol exposure in the first trimester may alter visual neurodevelopmental timing in early infancy. Exploratory individual-difference analysis across infants with and without PAE tested the relation between VEP latencies and myelination for a subsample of infants with usable magnetic resonance imaging (MRI) T1w and T2w scans collected at the same time point as EEG (n = 47). Decreased MRI T1w/T2w ratios (an indicator of myelin) in the primary visual cortex (n = 47) were linked to longer P1 VEP latencies. Results from these two sets of analyses suggest that prenatal alcohol and postnatal myelination may both separately impact VEP latency over infancy. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

5.
Med Image Anal ; 94: 103125, 2024 May.
Article in English | MEDLINE | ID: mdl-38428272

ABSTRACT

In this paper, we study pseudo-labelling. Pseudo-labelling employs raw inferences on unlabelled data as pseudo-labels for self-training. We elucidate the empirical successes of pseudo-labelling by establishing a link between this technique and the Expectation Maximisation algorithm. Through this, we realise that the original pseudo-labelling serves as an empirical estimation of its more comprehensive underlying formulation. Following this insight, we present a full generalisation of pseudo-labels under Bayes' theorem, termed Bayesian Pseudo Labels. Subsequently, we introduce a variational approach to generate these Bayesian Pseudo Labels, involving the learning of a threshold to automatically select high-quality pseudo labels. In the remainder of the paper, we showcase the applications of pseudo-labelling and its generalised form, Bayesian Pseudo-Labelling, in the semi-supervised segmentation of medical images. Specifically, we focus on: (1) 3D binary segmentation of lung vessels from CT volumes; (2) 2D multi-class segmentation of brain tumours from MRI volumes; (3) 3D binary segmentation of whole brain tumours from MRI volumes; and (4) 3D binary segmentation of prostate from MRI volumes. We further demonstrate that pseudo-labels can enhance the robustness of the learned representations. The code is released in the following GitHub repository: https://github.com/moucheng2017/EMSSL.


Subject(s)
Brain Neoplasms , Motivation , Male , Humans , Bayes Theorem , Algorithms , Brain , Image Processing, Computer-Assisted
6.
Med Image Anal ; 93: 103098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320370

ABSTRACT

Characterising clinically-relevant vascular features, such as vessel density and fractal dimension, can benefit biomarker discovery and disease diagnosis for both ophthalmic and systemic diseases. In this work, we explicitly encode vascular features into an end-to-end loss function for multi-class vessel segmentation, categorising pixels into artery, vein, uncertain pixels, and background. This clinically-relevant feature optimised loss function (CF-Loss) regulates networks to segment accurate multi-class vessel maps that produce precise vascular features. Our experiments first verify that CF-Loss significantly improves both multi-class vessel segmentation and vascular feature estimation, with two standard segmentation networks, on three publicly available datasets. We reveal that pixel-based segmentation performance is not always positively correlated with accuracy of vascular features, thus highlighting the importance of optimising vascular features directly via CF-Loss. Finally, we show that improved vascular features from CF-Loss, as biomarkers, can yield quantitative improvements in the prediction of ischaemic stroke, a real-world clinical downstream task. The code is available at https://github.com/rmaphoh/feature-loss.


Subject(s)
Brain Ischemia , Stroke , Humans , Algorithms , Image Processing, Computer-Assisted/methods , Fundus Oculi
7.
Nat Rev Neurosci ; 25(2): 111-130, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191721

ABSTRACT

Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to 'black box' machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Disease Progression
8.
Eur Respir J ; 63(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-37973176

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) with coexistent emphysema, termed combined pulmonary fibrosis and emphysema (CPFE) may associate with reduced forced vital capacity (FVC) declines compared to non-CPFE IPF patients. We examined associations between mortality and functional measures of disease progression in two IPF cohorts. METHODS: Visual emphysema presence (>0% emphysema) scored on computed tomography identified CPFE patients (CPFE/non-CPFE: derivation cohort n=317/n=183, replication cohort n=358/n=152), who were subgrouped using 10% or 15% visual emphysema thresholds, and an unsupervised machine-learning model considering emphysema and interstitial lung disease extents. Baseline characteristics, 1-year relative FVC and diffusing capacity of the lung for carbon monoxide (D LCO) decline (linear mixed-effects models), and their associations with mortality (multivariable Cox regression models) were compared across non-CPFE and CPFE subgroups. RESULTS: In both IPF cohorts, CPFE patients with ≥10% emphysema had a greater smoking history and lower baseline D LCO compared to CPFE patients with <10% emphysema. Using multivariable Cox regression analyses in patients with ≥10% emphysema, 1-year D LCO decline showed stronger mortality associations than 1-year FVC decline. Results were maintained in patients suitable for therapeutic IPF trials and in subjects subgrouped by ≥15% emphysema and using unsupervised machine learning. Importantly, the unsupervised machine-learning approach identified CPFE patients in whom FVC decline did not associate strongly with mortality. In non-CPFE IPF patients, 1-year FVC declines ≥5% and ≥10% showed strong mortality associations. CONCLUSION: When assessing disease progression in IPF, D LCO decline should be considered in patients with ≥10% emphysema and a ≥5% 1-year relative FVC decline threshold considered in non-CPFE IPF patients.


Subject(s)
Emphysema , Idiopathic Pulmonary Fibrosis , Pulmonary Emphysema , Humans , Pulmonary Emphysema/complications , Lung , Fibrosis , Emphysema/complications , Disease Progression , Retrospective Studies
9.
Biol Psychiatry ; 95(2): 136-146, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37480975

ABSTRACT

BACKGROUND: Diverse gene dosage disorders (GDDs) increase risk for psychiatric impairment, but characterization of GDD effects on the human brain has so far been piecemeal, with few simultaneous analyses of multiple brain features across different GDDs. METHODS: Here, through multimodal neuroimaging of 3 aneuploidy syndromes (XXY [total n = 191, 92 control participants], XYY [total n = 81, 47 control participants], and trisomy 21 [total n = 69, 41 control participants]), we systematically mapped the effects of supernumerary X, Y, and chromosome 21 dosage across a breadth of 15 different macrostructural, microstructural, and functional imaging-derived phenotypes (IDPs). RESULTS: The results revealed considerable diversity in cortical changes across GDDs and IDPs. This variegation of IDP change underlines the limitations of studying GDD effects unimodally. Integration across all IDP change maps revealed highly distinct architectures of cortical change in each GDD along with partial coalescence onto a common spatial axis of cortical vulnerability that is evident in all 3 GDDs. This common axis shows strong alignment with shared cortical changes in behaviorally defined psychiatric disorders and is enriched for specific molecular and cellular signatures. CONCLUSIONS: Use of multimodal neuroimaging data in 3 aneuploidies indicates that different GDDs impose unique fingerprints of change in the human brain that differ widely depending on the imaging modality that is being considered. Embedded in this variegation is a spatial axis of shared multimodal change that aligns with shared brain changes across psychiatric disorders and therefore represents a major high-priority target for future translational research in neuroscience.


Subject(s)
Brain , Mental Disorders , Humans , Brain/diagnostic imaging , Aneuploidy , Neuroimaging
10.
Med Image Anal ; 91: 103033, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000256

ABSTRACT

Large medical imaging data sets are becoming increasingly available. A common challenge in these data sets is to ensure that each sample meets minimum quality requirements devoid of significant artefacts. Despite a wide range of existing automatic methods having been developed to identify imperfections and artefacts in medical imaging, they mostly rely on data-hungry methods. In particular, the scarcity of artefact-containing scans available for training has been a major obstacle in the development and implementation of machine learning in clinical research. To tackle this problem, we propose a novel framework having four main components: (1) a set of artefact generators inspired by magnetic resonance physics to corrupt brain MRI scans and augment a training dataset, (2) a set of abstract and engineered features to represent images compactly, (3) a feature selection process that depends on the class of artefact to improve classification performance, and (4) a set of Support Vector Machine (SVM) classifiers trained to identify artefacts. Our novel contributions are threefold: first, we use the novel physics-based artefact generators to generate synthetic brain MRI scans with controlled artefacts as a data augmentation technique. This will avoid the labour-intensive collection and labelling process of scans with rare artefacts. Second, we propose a large pool of abstract and engineered image features developed to identify 9 different artefacts for structural MRI. Finally, we use an artefact-based feature selection block that, for each class of artefacts, finds the set of features that provide the best classification performance. We performed validation experiments on a large data set of scans with artificially-generated artefacts, and in a multiple sclerosis clinical trial where real artefacts were identified by experts, showing that the proposed pipeline outperforms traditional methods. In particular, our data augmentation increases performance by up to 12.5 percentage points on the accuracy, F1, F2, precision and recall. At the same time, the computation cost of our pipeline remains low - less than a second to process a single scan - with the potential for real-time deployment. Our artefact simulators obtained using adversarial learning enable the training of a quality control system for brain MRI that otherwise would have required a much larger number of scans in both supervised and unsupervised settings. We believe that systems for quality control will enable a wide range of high-throughput clinical applications based on the use of automatic image-processing pipelines.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Neuroimaging , Machine Learning
11.
Med Image Anal ; 91: 103016, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913577

ABSTRACT

Survival analysis is a valuable tool for estimating the time until specific events, such as death or cancer recurrence, based on baseline observations. This is particularly useful in healthcare to prognostically predict clinically important events based on patient data. However, existing approaches often have limitations; some focus only on ranking patients by survivability, neglecting to estimate the actual event time, while others treat the problem as a classification task, ignoring the inherent time-ordered structure of the events. Additionally, the effective utilisation of censored samples-data points where the event time is unknown- is essential for enhancing the model's predictive accuracy. In this paper, we introduce CenTime, a novel approach to survival analysis that directly estimates the time to event. Our method features an innovative event-conditional censoring mechanism that performs robustly even when uncensored data is scarce. We demonstrate that our approach forms a consistent estimator for the event model parameters, even in the absence of uncensored data. Furthermore, CenTime is easily integrated with deep learning models with no restrictions on batch size or the number of uncensored samples. We compare our approach to standard survival analysis methods, including the Cox proportional-hazard model and DeepHit. Our results indicate that CenTime offers state-of-the-art performance in predicting time-to-death while maintaining comparable ranking performance. Our implementation is publicly available at https://github.com/ahmedhshahin/CenTime.


Subject(s)
Survival Analysis , Humans , Proportional Hazards Models
12.
Placenta ; 144: 29-37, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952367

ABSTRACT

INTRODUCTION: In-vivo measurements of placental structure and function have the potential to improve prediction, diagnosis, and treatment planning for a wide range of pregnancy complications, such as fetal growth restriction and pre-eclampsia, and hence inform clinical decision making, ultimately improving patient outcomes. MRI is emerging as a technique with increased sensitivity to placental structure and function compared to the current clinical standard, ultrasound. METHODS: We demonstrate and evaluate a combined diffusion-relaxation MRI acquisition and analysis pipeline on a sizable cohort of 78 normal pregnancies with gestational ages ranging from 15 + 5 to 38 + 4 weeks. Our acquisition comprises a combined T2*-diffusion MRI acquisition sequence - which is simultaneously sensitive to oxygenation, microstructure and microcirculation. We analyse our scans with a data-driven unsupervised machine learning technique, InSpect, that parsimoniously identifies distinct components in the data. RESULTS: We identify and map seven potential placental microenvironments and reveal detailed insights into multiple microstructural and microcirculatory features of the placenta, and assess their trends across gestation. DISCUSSION: By demonstrating direct observation of micro-scale placental structure and function, and revealing clear trends across pregnancy, our work contributes towards the development of robust imaging biomarkers for pregnancy complications and the ultimate goal of a normative model of placental development.


Subject(s)
Diffusion Magnetic Resonance Imaging , Placenta , Pregnancy , Humans , Female , Placenta/diagnostic imaging , Microcirculation , Fetal Growth Retardation , Magnetic Resonance Imaging/methods , Placentation
13.
PLoS One ; 18(11): e0294666, 2023.
Article in English | MEDLINE | ID: mdl-38019832

ABSTRACT

There is still limited understanding of how chronic conditions co-occur in patients with multimorbidity and what are the consequences for patients and the health care system. Most reported clusters of conditions have not considered the demographic characteristics of these patients during the clustering process. The study used data for all registered patients that were resident in Fife or Tayside, Scotland and aged 25 years or more on 1st January 2000 and who were followed up until 31st December 2018. We used linked demographic information, and secondary care electronic health records from 1st January 2000. Individuals with at least two of the 31 Elixhauser Comorbidity Index conditions were identified as having multimorbidity. Market basket analysis was used to cluster the conditions for the whole population and then repeatedly stratified by age, sex and deprivation. 318,235 individuals were included in the analysis, with 67,728 (21·3%) having multimorbidity. We identified five distinct clusters of conditions in the population with multimorbidity: alcohol misuse, cancer, obesity, renal failure, and heart failure. Clusters of long-term conditions differed by age, sex and socioeconomic deprivation, with some clusters not present for specific strata and others including additional conditions. These findings highlight the importance of considering demographic factors during both clustering analysis and intervention planning for individuals with multiple long-term conditions. By taking these factors into account, the healthcare system may be better equipped to develop tailored interventions that address the needs of complex patients.


Subject(s)
Electronic Health Records , Multimorbidity , Humans , Scotland/epidemiology , Delivery of Health Care , Chronic Disease , Cluster Analysis
14.
Pattern Recognit ; 138: None, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37781685

ABSTRACT

Supervised machine learning methods have been widely developed for segmentation tasks in recent years. However, the quality of labels has high impact on the predictive performance of these algorithms. This issue is particularly acute in the medical image domain, where both the cost of annotation and the inter-observer variability are high. Different human experts contribute estimates of the "actual" segmentation labels in a typical label acquisition process, influenced by their personal biases and competency levels. The performance of automatic segmentation algorithms is limited when these noisy labels are used as the expert consensus label. In this work, we use two coupled CNNs to jointly learn, from purely noisy observations alone, the reliability of individual annotators and the expert consensus label distributions. The separation of the two is achieved by maximally describing the annotator's "unreliable behavior" (we call it "maximally unreliable") while achieving high fidelity with the noisy training data. We first create a toy segmentation dataset using MNIST and investigate the properties of the proposed algorithm. We then use three public medical imaging segmentation datasets to demonstrate our method's efficacy, including both simulated (where necessary) and real-world annotations: 1) ISBI2015 (multiple-sclerosis lesions); 2) BraTS (brain tumors); 3) LIDC-IDRI (lung abnormalities). Finally, we create a real-world multiple sclerosis lesion dataset (QSMSC at UCL: Queen Square Multiple Sclerosis Center at UCL, UK) with manual segmentations from 4 different annotators (3 radiologists with different level skills and 1 expert to generate the expert consensus label). In all datasets, our method consistently outperforms competing methods and relevant baselines, especially when the number of annotations is small and the amount of disagreement is large. The studies also reveal that the system is capable of capturing the complicated spatial characteristics of annotators' mistakes.

15.
Brain ; 146(11): 4702-4716, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37807084

ABSTRACT

Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics.


Subject(s)
Brain , Epilepsy , Humans , Brain/diagnostic imaging , Brain/pathology , Artificial Intelligence , Cross-Sectional Studies , Magnetic Resonance Imaging , Epilepsy/diagnostic imaging , Epilepsy/pathology , Atrophy/pathology
16.
Nature ; 622(7981): 156-163, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704728

ABSTRACT

Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders1. However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications2. Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging.


Subject(s)
Artificial Intelligence , Eye Diseases , Retina , Humans , Eye Diseases/complications , Eye Diseases/diagnostic imaging , Heart Failure/complications , Heart Failure/diagnosis , Myocardial Infarction/complications , Myocardial Infarction/diagnosis , Retina/diagnostic imaging , Supervised Machine Learning
17.
Imaging Neurosci (Camb) ; 1: 1-19, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37719837

ABSTRACT

Timelines of events, such as symptom appearance or a change in biomarker value, provide powerful signatures that characterise progressive diseases. Understanding and predicting the timing of events is important for clinical trials targeting individuals early in the disease course when putative treatments are likely to have the strongest effect. However, previous models of disease progression cannot estimate the time between events and provide only an ordering in which they change. Here, we introduce the temporal event-based model (TEBM), a new probabilistic model for inferring timelines of biomarker events from sparse and irregularly sampled datasets. We demonstrate the power of the TEBM in two neurodegenerative conditions: Alzheimer's disease (AD) and Huntington's disease (HD). In both diseases, the TEBM not only recapitulates current understanding of event orderings but also provides unique new ranges of timescales between consecutive events. We reproduce and validate these findings using external datasets in both diseases. We also demonstrate that the TEBM improves over current models; provides unique stratification capabilities; and enriches simulated clinical trials to achieve a power of 80% with less than half the cohort size compared with random selection. The application of the TEBM naturally extends to a wide range of progressive conditions.

18.
Eur J Radiol ; 168: 111109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769532

ABSTRACT

PURPOSE: This study aimed to assess the image quality of apparent diffusion coefficient (ADC) maps derived from conventional diffusion-weighted MRI and fractional intracellular volume maps (FIC) from VERDICT MRI (Vascular, Extracellular, Restricted Diffusion for Cytometry in Tumours) in patients from the INNOVATE trial. The inter-reader agreement was also assessed. METHODS: Two readers analysed both ADC and FIC maps from 57 patients enrolled in the INNOVATE prospective trial. Image quality was assessed using the Prostate Imaging Quality (PI-QUAL) score and a subjective image quality Likert score (Likert-IQ). The image quality of FIC and ADC were compared using a Wilcoxon Signed Ranks test. The inter-reader agreement was assessed with Cohen's kappa. RESULTS: There was no statistically significant difference between the PI-QUAL score for FIC datasets compared to ADC datasets for either reader (p = 0.240 and p = 0.614). Using the Likert-IQ score, FIC image quality was higher compared to ADC (p = 0.021) as assessed by reader-1 but not for reader-2 (p = 0.663). The inter-reader agreement was 'fair' for PI-QUAL scoring of datasets with FIC maps at 0.27 (95% confidence interval; 0.08-0.46) and ADC datasets at 0.39 (95% confidence interval 0.22-0.57). For Likert scoring, the inter-reader agreement was also 'fair' for FIC maps at 0.38 (95% confidence interval; 0.10-0.65) and substantial for ADC maps at 0.62 (95% confidence interval; 0.39-0.86). CONCLUSION: Image quality was comparable for FIC and ADC. The inter-reader agreement was similar when using PIQUAL for both FIC and ADC datasets but higher for ADC maps compared to FIC maps using the image quality Likert score.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Artifacts , Prospective Studies , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Retrospective Studies
19.
Heliyon ; 9(8): e18695, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600411

ABSTRACT

In this study, we present a hybrid CNN-RNN approach to investigate long-term survival of subjects in a lung cancer screening study. Subjects who died of cardiovascular and respiratory causes were identified whereby the CNN model was used to capture imaging features in the CT scans and the RNN model was used to investigate time series and thus global information. To account for heterogeneity in patients' follow-up times, two different variants of LSTM models were evaluated, each incorporating different strategies to address irregularities in follow-up time. The models were trained on subjects who underwent cardiovascular and respiratory deaths and a control cohort matched to participant age, gender, and smoking history. The combined model can achieve an AUC of 0.76 which outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation Coefficient are 0.63 and 0.42 respectively. The generalisability of the model is further validated on an 'external' cohort. The same models were applied to survival analysis with the Cox Proportional Hazard model. It was demonstrated that incorporating the follow-up history can lead to improvement in survival prediction. The Cox neural network can achieve an IPCW C-index of 0.75 on the internal dataset and 0.69 on an external dataset. Delineating subjects at increased risk of cardiorespiratory mortality can alert clinicians to request further more detailed functional or imaging studies to improve the assessment of cardiorespiratory disease burden. Such strategies may uncover unsuspected and under-recognised pathologies thereby potentially reducing patient morbidity.

20.
Brain ; 146(12): 4935-4948, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37433038

ABSTRACT

Amyloid-ß is thought to facilitate the spread of tau throughout the neocortex in Alzheimer's disease, though how this occurs is not well understood. This is because of the spatial discordance between amyloid-ß, which accumulates in the neocortex, and tau, which accumulates in the medial temporal lobe during ageing. There is evidence that in some cases amyloid-ß-independent tau spreads beyond the medial temporal lobe where it may interact with neocortical amyloid-ß. This suggests that there may be multiple distinct spatiotemporal subtypes of Alzheimer's-related protein aggregation, with potentially different demographic and genetic risk profiles. We investigated this hypothesis, applying data-driven disease progression subtyping models to post-mortem neuropathology and in vivo PET-based measures from two large observational studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). We consistently identified 'amyloid-first' and 'tau-first' subtypes using cross-sectional information from both studies. In the amyloid-first subtype, extensive neocortical amyloid-ß precedes the spread of tau beyond the medial temporal lobe, while in the tau-first subtype, mild tau accumulates in medial temporal and neocortical areas prior to interacting with amyloid-ß. As expected, we found a higher prevalence of the amyloid-first subtype among apolipoprotein E (APOE) ε4 allele carriers while the tau-first subtype was more common among APOE ε4 non-carriers. Within tau-first APOE ε4 carriers, we found an increased rate of amyloid-ß accumulation (via longitudinal amyloid PET), suggesting that this rare group may belong within the Alzheimer's disease continuum. We also found that tau-first APOE ε4 carriers had several fewer years of education than other groups, suggesting a role for modifiable risk factors in facilitating amyloid-ß-independent tau. Tau-first APOE ε4 non-carriers, in contrast, recapitulated many of the features of primary age-related tauopathy. The rate of longitudinal amyloid-ß and tau accumulation (both measured via PET) within this group did not differ from normal ageing, supporting the distinction of primary age-related tauopathy from Alzheimer's disease. We also found reduced longitudinal subtype consistency within tau-first APOE ε4 non-carriers, suggesting additional heterogeneity within this group. Our findings support the idea that amyloid-ß and tau may begin as independent processes in spatially disconnected regions, with widespread neocortical tau resulting from the local interaction of amyloid-ß and tau. The site of this interaction may be subtype-dependent: medial temporal lobe in amyloid-first, neocortex in tau-first. These insights into the dynamics of amyloid-ß and tau may inform research and clinical trials that target these pathologies.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , tau Proteins/metabolism , Cross-Sectional Studies , Amyloid beta-Peptides/metabolism , Amyloid , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...