Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 3(5): pgae198, 2024 May.
Article in English | MEDLINE | ID: mdl-38983694

ABSTRACT

Nanodiamonds (NDs) comprise a family of carbon-based nanomaterials (i.e. diameter <100 nm) with the same sp3 lattice structure that gives natural diamonds their exceptional hardness and electrical insulating properties. Among all carbon nanomaterials-e.g. carbon nanotubes, nanodots, and fullerenes-NDs are of particular interest for biomedical applications because they offer high biocompatibility, stability in vivo, and a dynamic surface chemistry that can be manipulated to perform a seemingly limitless variety of ultra-specific tasks. NDs are already deepening our understanding of basic biological processes, while numerous laboratories continue studying these nanomaterials with an aim of making seismic improvements in the prevention, diagnosis, and treatment of human diseases. This review surveys approximately 2,000 the most recent articles published in the last 5 years and includes references to more than 150 of the most relevant publications on the biomedical applications of NDs. The findings are categorized by contemporary lines of investigation based on potential applications, namely: genetics and gene editing, drug delivery systems, neural interfacing, biomedical sensors, synthetic biology, and organ and tissue regeneration. This review also includes a brief background of NDs and the methods currently developed for their synthesis and preparation. Finally, recommendations for future investigations are offered.

2.
Biomaterials ; 302: 122312, 2023 11.
Article in English | MEDLINE | ID: mdl-37690380

ABSTRACT

Biologics are unaffordable to a large majority of the global population because of prohibitively expensive fermentation systems, purification and the requirement for cold chain for storage and transportation. Limitations of current production and delivery systems of biologics were evident during the recent pandemic when <2.5% of vaccines produced were available to low-income countries and ∼19 million doses were discarded in Africa due to lack of cold-chain infrastructure. Among FDA-approved biologics since 2015, >90% are delivered using invasive methods. While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral drugs have been approved by FDA since 2015. A newly launched oral biologic costs only ∼3% of the average cost of injectable biologics because of the simplified regulatory approval process by elimination of prohibitively expensive fermentation, purification, cold storage/transportation. In addition, the cost of developing a new biologic injectable product (∼$2.5 billion) has been dramatically reduced through oral or topical delivery. Topical delivery has the unique advantage of targeted delivery of high concentration protein drugs, without getting diluted in circulating blood. However, only very few topical drugs have been approved by the FDA. Therefore, this review highlights recent advances in oral or topical delivery of proteins at early or advanced stages of human clinical trials using chewing gums, patches or sprays, or nucleic acid drugs directly, or in combination with, nanoparticles and offers future directions.


Subject(s)
Biological Products , Proteins , Humans , Pharmaceutical Preparations , Administration, Topical , Administration, Oral
SELECTION OF CITATIONS
SEARCH DETAIL
...