Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cardiovasc Med ; 10: 1064290, 2023.
Article in English | MEDLINE | ID: mdl-36910526

ABSTRACT

Pulmonary hypertension due to left heart disease (PH-LHD) is the most frequent manifestation of PH but lacks any approved treatment. Activin receptor type IIA-Fc fusion protein (ActRIIA-Fc) was found previously to be efficacious in experimental and human pulmonary arterial hypertension (PAH). Here we tested the hypothesis that ActRIIA-Fc improves pulmonary vascular remodeling and alleviates PH in models of PH-LHD, specifically in subtypes of heart failure with reduced ejection fraction (PH-HFrEF) and preserved ejection fraction (PH-HFpEF). Treatment with murine ActRIIA-Fc reduced cardiac remodeling and improved cardiac function in two mouse models of left heart disease without PH, confirming that this inhibitor of activin-class ligand signaling can exert cardioprotective effects in heart failure. In a mouse model of PH-HFrEF with prolonged pressure overload caused by transverse aortic constriction, ActRIIA-Fc treatment significantly reduced pulmonary vascular remodeling, pulmonary fibrosis, and pulmonary hypertension while exerting beneficial structural, functional, and histological effects on both the left and right heart. Additionally, in an obese ZSF1-SU5416 rat model of PH-HFpEF with metabolic dysregulation, therapeutic treatment with ActRIIA-Fc normalized SMAD3 overactivation in pulmonary vascular and perivascular cells, reversed pathologic pulmonary vascular and cardiac remodeling, improved pulmonary and cardiac fibrosis, alleviated PH, and produced marked functional improvements in both cardiac ventricles. Studies in vitro revealed that treatment with ActRIIA-Fc prevents an abnormal, glucose-induced, activin-mediated, migratory phenotype in human pulmonary artery smooth muscle cells, providing a mechanism by which ActRIIA-Fc could exert therapeutic effects in experimental PH-HFpEF with metabolic dysregulation. Our results demonstrate that ActRIIA-Fc broadly corrects cardiopulmonary structure and function in experimental PH-LHD, including models of PH-HFrEF and PH-HFpEF, leading to alleviation of PH under diverse pathophysiological conditions. These findings highlight the important pathogenic contributions of activin-class ligands in multiple forms of experimental PH and support ongoing clinical evaluation of human ActRIIA-Fc (sotatercept) in patients with PH-HFpEF.

2.
Sci Rep ; 12(1): 7803, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551212

ABSTRACT

Sotatercept is an activin receptor type IIA-Fc (ActRIIA-Fc) fusion protein that improves cardiopulmonary function in patients with pulmonary arterial hypertension (PAH) by selectively trapping activins and growth differentiation factors. However, the cellular and molecular mechanisms of ActRIIA-Fc action are incompletely understood. Here, we determined through genome-wide expression profiling that inflammatory and immune responses are prominently upregulated in the lungs of a Sugen-hypoxia rat model of severe angio-obliterative PAH, concordant with profiles observed in PAH patients. Therapeutic treatment with ActRIIA-Fc-but not with a vasodilator-strikingly reversed proinflammatory and proliferative gene expression profiles and normalized macrophage infiltration in diseased rodent lungs. Furthermore, ActRIIA-Fc normalized pulmonary macrophage infiltration and corrected cardiopulmonary structure and function in Bmpr2 haploinsufficient mice subjected to hypoxia, a model of heritable PAH. Three high-affinity ligands of ActRIIA-Fc each induced macrophage activation in vitro, and their combined immunoneutralization in PAH rats produced cardiopulmonary benefits comparable to those elicited by ActRIIA-Fc. Our results in complementary experimental and genetic models of PAH reveal therapeutic anti-inflammatory activities of ActRIIA-Fc that, together with its known anti-proliferative effects on vascular cell types, could underlie clinical activity of sotatercept as either monotherapy or add-on to current PAH therapies.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Disease Models, Animal , Familial Primary Pulmonary Hypertension , Humans , Hypertension, Pulmonary/drug therapy , Hypoxia/drug therapy , Inflammation/drug therapy , Mice , Pulmonary Arterial Hypertension/drug therapy , Rats , Recombinant Fusion Proteins
3.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33586684

ABSTRACT

Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-ß superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effects - concordant with SPR results - on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders.


Subject(s)
Activin Receptors, Type II/pharmacology , Activin Receptors, Type I/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Immunoglobulin Fc Fragments/pharmacology , Muscle, Skeletal/metabolism , Muscular Disorders, Atrophic/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Recombinant Fusion Proteins/pharmacology , Activin Receptors, Type I/genetics , Activin Receptors, Type II/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , CHO Cells , Cricetulus , Disease Models, Animal , Humans , Immunoglobulin Fc Fragments/genetics , Male , Mice , Mice, Transgenic , Muscle, Skeletal/pathology , Muscular Disorders, Atrophic/genetics , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Recombinant Fusion Proteins/genetics
4.
Front Med (Lausanne) ; 8: 814222, 2021.
Article in English | MEDLINE | ID: mdl-35141256

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood pressure in the pulmonary circulation driven by pathological remodeling of distal pulmonary arteries, leading typically to death by right ventricular failure. Available treatments improve physical activity and slow disease progression, but they act primarily as vasodilators and have limited effects on the biological cause of the disease-the uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced signaling by the transforming growth factor-ß (TGF-ß) superfamily contributes extensively to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling. We review the TGF-ß superfamily mechanisms underlying PAH pathogenesis, superfamily interactions with inflammation and mechanobiological forces, and therapeutic strategies under development that aim to restore SMAD signaling balance in the diseased pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial remodeling in PAH by targeting causative mechanisms and therefore hold significant promise for the PAH patient population.

5.
J Clin Invest ; 130(2): 582-589, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31961337

ABSTRACT

Signaling by the TGF-ß superfamily is important in the regulation of hematopoiesis and is dysregulated in myelodysplastic syndromes (MDSs), contributing to ineffective hematopoiesis and clinical cytopenias. TGF-ß, activins, and growth differentiation factors exert inhibitory effects on red cell formation by activating canonical SMAD2/3 pathway signaling. In this Review, we summarize evidence that overactivation of SMAD2/3 signaling pathways in MDSs causes anemia due to impaired erythroid maturation. We also describe the basis for biological activity of activin receptor ligand traps, novel fusion proteins such as luspatercept that are promising as erythroid maturation agents to alleviate anemia and related comorbidities in MDSs and other conditions characterized by impaired erythroid maturation.


Subject(s)
Activin Receptors, Type II/therapeutic use , Activin Receptors/metabolism , Erythrocytes/metabolism , Erythropoiesis/drug effects , Immunoglobulin Fc Fragments/therapeutic use , Myelodysplastic Syndromes , Recombinant Fusion Proteins/therapeutic use , Signal Transduction/drug effects , Animals , Erythrocytes/pathology , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Smad2 Protein/metabolism , Smad3 Protein/metabolism
6.
J Pharmacol Exp Ther ; 368(3): 435-445, 2019 03.
Article in English | MEDLINE | ID: mdl-30563942

ABSTRACT

Follistatin is an endogenous glycoprotein that promotes growth and repair of skeletal muscle by sequestering inhibitory ligands of the transforming growth factor-ß superfamily and may therefore have therapeutic potential for neuromuscular diseases. Here, we sought to determine the suitability of a newly engineered follistatin fusion protein (FST288-Fc) to promote localized, rather than systemic, growth of skeletal muscle by capitalizing on the intrinsic heparin-binding ability of the follistatin-288 isoform. As determined by surface plasmon resonance and cell-based assays, FST288-Fc binds to activin A, activin B, myostatin (growth differentiation factor GDF8), and GDF11 with high affinity and neutralizes their activity in vitro. Intramuscular administration of FST288-Fc in mice induced robust, dose-dependent growth of the targeted muscle but not of surrounding or contralateral muscles, in contrast to the systemic effects of a locally administered fusion protein incorporating activin receptor type IIB (ActRIIB-Fc). Furthermore, systemic administration of FST288-Fc in mice did not alter muscle mass or body composition as determined by NMR, which again contrasts with the pronounced systemic activity of ActRIIB-Fc when administered by the same route. Subsequent analysis revealed that FST288-Fc in the circulation undergoes rapid proteolysis, thereby restricting its activity to individual muscles targeted by intramuscular administration. These results indicate that FST288-Fc can produce localized growth of skeletal muscle in a targeted manner with reduced potential for undesirable systemic effects. Thus, FST288-Fc and similar agents may be beneficial in the treatment of disorders with muscle atrophy that is focal, asymmetric, or otherwise heterogeneous.


Subject(s)
Follistatin/administration & dosage , Immunoglobulin G/administration & dosage , Muscle, Skeletal/drug effects , Muscle, Skeletal/growth & development , Recombinant Fusion Proteins/administration & dosage , Amino Acid Sequence , Animals , Dose-Response Relationship, Drug , Follistatin/genetics , Follistatin/metabolism , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Injections, Intramuscular , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Protein Structure, Secondary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
7.
Blood ; 123(25): 3864-72, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24795345

ABSTRACT

In ß-thalassemia, unequal production of α- and ß-globin chains in erythroid precursors causes apoptosis and inhibition of late-stage erythroid differentiation, leading to anemia, ineffective erythropoiesis (IE), and dysregulated iron homeostasis. Here we used a murine model of ß-thalassemia intermedia (Hbb(th1/th1) mice) to investigate effects of a modified activin receptor type IIB (ActRIIB) ligand trap (RAP-536) that inhibits Smad2/3 signaling. In Hbb(th1/th1) mice, treatment with RAP-536 reduced overactivation of Smad2/3 in splenic erythroid precursors. In addition, treatment of Hbb(th1/th1) mice with RAP-536 reduced α-globin aggregates in peripheral red cells, decreased the elevated reactive oxygen species present in erythroid precursors and peripheral red cells, and alleviated anemia by promoting differentiation of late-stage erythroid precursors and reducing hemolysis. Notably, RAP-536 treatment mitigated disease complications of IE, including iron overload, splenomegaly, and bone pathology, while reducing erythropoietin levels, improving erythrocyte morphology, and extending erythrocyte life span. These results implicate signaling by the transforming growth factor-ß superfamily in late-stage erythropoiesis and reveal potential of a modified ActRIIB ligand trap as a novel therapeutic agent for thalassemia syndrome and other red cell disorders characterized by IE.


Subject(s)
Activin Receptors, Type II/genetics , Erythropoiesis/drug effects , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , beta-Thalassemia/drug therapy , Activin Receptors, Type II/metabolism , Anemia/blood , Anemia/genetics , Anemia/prevention & control , Animals , Blotting, Western , Cell Differentiation/drug effects , Cell Differentiation/genetics , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythroid Precursor Cells/drug effects , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , Hemolysis/drug effects , Hemolysis/genetics , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Iron Overload/metabolism , Iron Overload/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism , beta-Globins/genetics , beta-Globins/metabolism , beta-Thalassemia/blood , beta-Thalassemia/genetics
8.
Nat Med ; 20(4): 408-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24658078

ABSTRACT

Erythropoietin (EPO) stimulates proliferation of early-stage erythrocyte precursors and is widely used for the treatment of chronic anemia. However, several types of EPO-resistant anemia are characterized by defects in late-stage erythropoiesis, which is EPO independent. Here we investigated regulation of erythropoiesis using a ligand-trapping fusion protein (ACE-536) containing the extracellular domain of human activin receptor type IIB (ActRIIB) modified to reduce activin binding. ACE-536, or its mouse version RAP-536, produced rapid and robust increases in erythrocyte numbers in multiple species under basal conditions and reduced or prevented anemia in murine models. Unlike EPO, RAP-536 promoted maturation of late-stage erythroid precursors in vivo. Cotreatment with ACE-536 and EPO produced a synergistic erythropoietic response. ACE-536 bound growth differentiation factor-11 (GDF11) and potently inhibited GDF11-mediated Smad2/3 signaling. GDF11 inhibited erythroid maturation in mice in vivo and ex vivo. Expression of GDF11 and ActRIIB in erythroid precursors decreased progressively with maturation, suggesting an inhibitory role for GDF11 in late-stage erythroid differentiation. RAP-536 treatment also reduced Smad2/3 activation, anemia, erythroid hyperplasia and ineffective erythropoiesis in a mouse model of myelodysplastic syndromes (MDS). These findings implicate transforming growth factor-ß (TGF-ß) superfamily signaling in erythroid maturation and identify ACE-536 as a new potential treatment for anemia, including that caused by ineffective erythropoiesis.


Subject(s)
Activin Receptors, Type II , Anemia/blood , Bone Morphogenetic Proteins/drug effects , Erythroid Precursor Cells/drug effects , Erythropoiesis/drug effects , Growth Differentiation Factors/drug effects , Hematinics/pharmacology , Myelodysplastic Syndromes/blood , Recombinant Fusion Proteins/pharmacology , Animals , Bone Morphogenetic Proteins/antagonists & inhibitors , Disease Models, Animal , Drug Therapy, Combination , Erythrocyte Count , Erythropoietin/pharmacology , Growth Differentiation Factors/antagonists & inhibitors , Haplorhini , Humans , Ligands , Mice , Rats , Reticulocyte Count , Signal Transduction/drug effects , Smad2 Protein/drug effects , Smad3 Protein/drug effects
9.
Expert Opin Investig Drugs ; 22(1): 87-101, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23127248

ABSTRACT

INTRODUCTION: Antagonists of activin receptor signaling may be beneficial for cancer-related anemia and bone disease caused by malignancies such as multiple myeloma and solid tumors. AREAS COVERED: We review evidence of dysregulated signaling by activin receptor pathways in anemia, myeloma-associated osteolysis, and metastatic bone disease, as well as potential involvement in carcinogenesis. We then review properties of activin receptor antagonists in clinical development. EXPERT OPINION: Sotatercept is a novel receptor fusion protein that functions as a soluble trap to sequester ligands of activin receptor type IIA (ActRIIA). Preclinically, the murine version of sotatercept increased red blood cells (RBC) in a model of chemotherapy-induced anemia, inhibited tumor growth and metastasis, and exerted anabolic effects on bone in diverse models of multiple myeloma. Clinically, sotatercept increases RBC markedly in healthy volunteers and patients with multiple myeloma. With a rapid onset of action differing from erythropoietin, sotatercept is in clinical development as a potential first-in-class therapeutic for cancer-related anemia, including those characterized by ineffective erythropoiesis as in myelodysplastic syndromes. Anabolic bone activity in early clinical studies and potential antitumor effects make sotatercept a promising therapeutic candidate for multiple myeloma and malignant bone diseases. Antitumor activity has been observed preclinically with small-molecule inhibitors of transforming growth factor-ß receptor type I (ALK5) that also antagonize the closely related activin receptors ALK4 and ALK7. LY-2157299, the first such inhibitor to enter clinical studies, has shown an acceptable safety profile so far in patients with advanced cancer. Together, these data identify activin receptor antagonists as attractive therapeutic candidates for multiple diseases.


Subject(s)
Activin Receptors/antagonists & inhibitors , Anemia/drug therapy , Bone Diseases/drug therapy , Neoplasms/drug therapy , Activin Receptors/metabolism , Anemia/etiology , Anemia/metabolism , Animals , Bone Diseases/etiology , Bone Diseases/metabolism , Humans , Neoplasms/complications , Neoplasms/metabolism
10.
Neuroreport ; 14(13): 1731-5, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-14512847

ABSTRACT

Exposure of pregnant rats to protein malnutrition throughout pregnancy alters the developing hippocampus, leading to increased inhibition and selective changes in hippocampal-mediated behaviors. Given that GABA mediates most inhibitory neurotransmission, we asked whether selective changes in the levels of GABA receptor subunit mRNAs might result. Quantitative RNase protection profiling of 12 GABAA and GABAB receptor subunit mRNAs show that alpha1 and beta2 decrease in the adult (P90) hippocampal formation of prenatally malnourished rats, while the levels of alpha3 are increased. Moreover, the distribution of alpha1, alpha3 and beta2 mRNAs remains unchanged in CA1 and CA3 hippocampal subfields relative to dentate gyrus. The data suggest that prenatal malnutrition produces global changes of certain GABAA, but not GABAB, receptor mRNAs in the hippocampal formation.


Subject(s)
Hippocampus/metabolism , Malnutrition/metabolism , Prenatal Exposure Delayed Effects , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Animals , Dentate Gyrus/metabolism , Female , In Situ Hybridization , Male , Pregnancy , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Receptors, GABA-B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...