Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Vaccines (Basel) ; 12(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38675757

ABSTRACT

BACKGROUND: Mannheimia haemolytica is a bovine respiratory pathogen commonly associated with bacterial bronchopneumonia. Current vaccine strategies have shown variable efficacy in feedlot cattle, and therefore novel vaccines are needed. Bacillus subtilis spores have been investigated as a mucosal vaccine platform, due to their ability to bind and present antigens to the mucosa and act as an adjuvant. The aim of this study was to develop two spore-based mucosal vaccines targeting M. haemolytica and evaluate their immunogenicity in mice. METHODS: Two antigen constructs composed of cholera toxin B subunit, M. haemolytica leukotoxin, and either the M. haemolytica outer membrane protein PlpE (MhCP1) or GS60 (MhCP2) were synthesized, purified and then bound to spores as vaccines. In two separate mice trials, the spore-bound vaccines (Spore-MhCP1 and Spore-MhCP2) were administered to mice through intranasal and intragastric routes, while free antigens were administered intranasally and intramuscularly. Unbound spores were also evaluated intranasally. Antigen-specific serum IgG and mucosal IgA from bronchoalveolar lavage, feces, and saliva were measured after vaccination. Mice sera from all treatment groups were assessed for their bactericidal activity against M. haemolytica. RESULTS: In both mice experiments, intramuscular immunization induced the strongest serum IgG antibody response. However, the intranasal administration of Spore-MhCP1 and Spore-MhCP2 elicited the greatest secretory IgA-specific response against leukotoxin, PlpE, and GS60 in bronchoalveolar lavage, saliva, and feces (p < 0.05). Compared to the intranasal administration of free antigen, spore-bound antigen groups showed greater bactericidal activity against M. haemolytica (p < 0.05). CONCLUSIONS: Since intranasally delivered Spore-MhCP1 and Spore-MhCP2 elicited both systemic and mucosal immune responses in mice, these vaccines may have potential to mitigate lung infection in cattle by restricting M. haemolytica colonization and proliferation in the respiratory tract. The efficacy of these mucosal spore-based vaccines merits further assessment against M. haemolytica in cattle.

2.
Anim Microbiome ; 6(1): 2, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254160

ABSTRACT

BACKGROUND: Lameness is defined as altered or abnormal gait due to dysfunction of the locomotor system, and is a health issue of feedlot cattle, having major economic, labour, and welfare implications. Digital dermatitis (DD-a lesion of the plantar surface of the foot) and foot rot (FR-affects the interdigital cleft) are common infectious causes of lameness in feedlots. These hoof lesions can occur alone or in combination (DD + FR) in the same hoof. A total of 208 hoof swabs were collected from three commercial feedlots located in southern Alberta. Every lesion sample was matched with a corresponding control skin sample taken from a healthy contralateral foot. Control skin samples were also collected from cattle with no lesion on any feet. Bacterial communities of three types of hoof lesions (DD, DD + FR, FR) and healthy skin were profiled using 16S amplicon sequencing. RESULTS: Alpha diversity analysis revealed a lower bacterial diversity on DD and FR lesions compared to control skin. Beta diversity analysis showed that bacterial communities of DD, FR, and DD + FR lesions were distinct from those of the control skin. While the impact of feedlot was minimal, lesion type contributed to 22% of the variation observed among bacterial communities (PERMANOVA-R = 0.22, P < 0.01). Compared to the corresponding control skin, there were 11, 12, and 3 differentially abundant (DA) bacterial genera in DD, DD + FR, and FR lesions, respectively. CONCLUSIONS: The bacterial community description of a DD + FR lesion is a novel finding. Not only did lesions lead to altered bacterial communities when compared to healthy skin, but the composition of those communities also differed depending on the hoof lesion. The 16S amplicon sequencing of surface swabs has significant value as a research tool in separating different hoof lesions and can provide additional insights to the polybacterial etiology of DD and FR in feedlot cattle.

3.
Front Plant Sci ; 14: 1251046, 2023.
Article in English | MEDLINE | ID: mdl-37790785

ABSTRACT

Bovine respiratory disease (BRD) affects feedlot cattle across North America, resulting in economic losses due to animal treatment and reduced performance. In an effort to develop a vaccine candidate targeting a primary bacterial agent contributing to BRD, we produced a tripartite antigen consisting of segments of the virulence factor Leukotoxin A (LktA) and lipoprotein PlpE from Mannheimia haemolytica, fused to a cholera toxin mucosal adjuvant (CTB). This recombinant subunit vaccine candidate was expressed in the leaves of Nicotiana benthamiana plants, with accumulation tested in five subcellular compartments. The recombinant protein was found to accumulate highest in the endoplasmic reticulum, but targeting to the chloroplast was employed for scaling up production due the absence of post-translational modification while still producing feasible levels. Leaves were freeze dried, then orally administered to mice to determine its immunogenicity. Sera from mice immunized with leaf tissue expressing the recombinant antigen contained IgG antibodies, specifically recognizing both LktA and PlpE. These mice also had a mucosal immune response to the CTB+LktA+PlpE protein as measured by the presence of LktA- and PlpE-specific IgA antibodies in lung and fecal material. Moreover, the antigen remained stable at room temperature with limited deterioration for up to one year when stored as lyophilized plant material. This study demonstrated that a recombinant antigen expressed in plant tissue elicited both humoral and mucosal immune responses when fed to mice, and warrants evaluation in cattle.

4.
Viruses ; 15(10)2023 10 16.
Article in English | MEDLINE | ID: mdl-37896873

ABSTRACT

Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling colibacillosis in laying hens. The lytic profile, host range, pH tolerance and morphology of seven APEC-infecting phages (ASO1A, ASO1B, ASO2A, ASO78A, ASO2B, AVIO78A and ASO78B) were assessed using a microplate phage virulence assay and transmission electron microscopy (TEM). The potential safety of phages at the genome level was predicted using AMRFinderPlus and the Virulence Factor Database. Finally, phage genera and genetic relatedness with other known phages from the NCBI GenBank database were inferred using the virus intergenomic distance calculator and single gene-based phylogenetic trees. The seven APEC-infecting phages preferentially lysed APEC strains in this study, with ECL21443 (O2) being the most susceptible to phages (n = 5). ASO78A had the broadest host range, lysing all tested strains (n = 5) except ECL20885 (O1). Phages were viable at a pH of 2.5 or 3.5-9.0 after 4 h of incubation. Based on TEM, phages were classed as myovirus, siphovirus and podovirus. No genes associated with virulence, antimicrobial resistance or lysogeny were detected in phage genomes. Comparative genomic analysis placed six of the seven phages in five genera: Felixounavirus (ASO1A and ASO1B), Phapecoctavirus (ASO2A), Tequatrovirus (ASO78A), Kayfunavirus (ASO2B) and Sashavirus (AVIO78A). Based on the nucleotide intergenomic similarity (<70%), phage ASO78B was not assigned a genus in the siphovirus and could represent a new genus in class Caudoviricetes. The tail fiber protein phylogeny revealed variations within APEC-infecting phages and closely related phages. Diverse APEC-infecting phages harbored in the environment demonstrate the potential to control colibacillosis in poultry.


Subject(s)
Bacteriophages , Escherichia coli Infections , Poultry Diseases , Animals , Female , Humans , Escherichia coli/genetics , Bacteriophages/genetics , Chickens , Phylogeny , Escherichia coli Infections/veterinary , Coliphages/genetics
5.
Front Microbiol ; 14: 1192763, 2023.
Article in English | MEDLINE | ID: mdl-37808284

ABSTRACT

Background: Bovine respiratory disease (BRD) is a significant health problem in beef cattle production, resulting in considerable economic losses due to mortalities, cost of treatment, and reduced feed efficiency. The onset of BRD is multifactorial, with numerous stressors being implicated, including transportation from farms to feedlots. In relation to animal welfare, regulations or practices may require mandatory rest times during transportation. Despite this, there is limited information on how transportation and rest stops affect the respiratory microbiota. Results: This study evaluated the effect of cattle source (ranch-direct or auction market-derived) and rest stop duration (0 or 8 h of rest) on the upper respiratory tract microbiota and its relationship to stress response indicators (blood cortisol and haptoglobin) of recently weaned cattle transported for 36 h. The community structure of bacteria was altered by feedlot placement. When cattle were off-loaded for a rest, several key bacterial genera associated with BRD (Mannheimia, Histophilus, Pasteurella) were increased for most sampling times after feedlot placement for the ranch-direct cattle group, compared to animals given no rest stop. Similarly, more sampling time points had elevated levels of BRD-associated genera when auction market cattle were compared to ranch-direct. When evaluated across time and treatments several genera including Mannheimia, Moraxella, Streptococcus and Corynebacterium were positively correlated with blood cortisol concentrations. Conclusion: This is the first study to assess the effect of rest during transportation and cattle source on the respiratory microbiota in weaned beef calves. The results suggest that rest stops and auction market placement may be risk factors for BRD, based solely on increased abundance of BRD-associated genera in the upper respiratory tract. However, it was not possible to link these microbiota to disease outcome, due to low incidence of BRD in the study populations. Larger scale studies are needed to further define how transportation variables impact cattle health.

6.
Vet Microbiol ; 285: 109838, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690145

ABSTRACT

Mycoplasma bovis is an important respiratory pathogen of cattle. In this study, the prevalence and antimicrobial susceptibility of M. bovis were evaluated from two Cohorts of feedlot cattle spanning an 8-year period. In the first study conducted in 2008-2009, nasopharyngeal swabs from cattle sampled at feedlot entry and after 60 days on feed were collected (Cohort 1). In a second study conducted in 2015-2016, nasopharyngeal and trans-tracheal samples were collected from cattle diagnosed with bovine respiratory disease (BRD) and matching healthy controls (Cohort 2). For Cohort 1, the prevalence of M. bovis was lower in cattle at entry compared to when the same individuals were sampled ≥60 days later (P < 0.05). For Cohort 2, the prevalence of M. bovis was greater in both nasopharyngeal and tracheal samples from cattle diagnosed with BRD, compared to controls (P < 0.05). In both Cohorts, almost all isolates were resistant to tilmicosin. Compared to M. bovis from Cohort 1, isolates of Cohort 2 exhibited increased resistance to clindamycin, enrofloxacin, florfenicol, tylosin, and tulathromycin, with the latter showing resistance levels >90 %. These data suggest that antimicrobials used to prevent and treat BRD selected for resistance in M. bovis over the 8-year period. For macrolides, cross-resistance occurred and M. bovis can retain resistance even when antimicrobial selection pressure is removed. Within 9 years of commercial availability of tulathromycin, the majority of M. bovis displayed resistance. Therefore, longitudinal evaluation of resistance in respiratory pathogens is important to ensure efficacious treatment of BRD.


Subject(s)
Anti-Infective Agents , Cattle Diseases , Mycoplasma bovis , Respiratory Tract Diseases , Humans , Cattle , Animals , Prevalence , Cattle Diseases/epidemiology , Cattle Diseases/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Respiratory Tract Diseases/veterinary , Respiratory System
7.
Sci Rep ; 13(1): 12981, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563163

ABSTRACT

Bovine respiratory disease (BRD) is a significant health issue in the North American feedlot industry, causing substantial financial losses due to morbidity and mortality. A lack of effective vaccines against BRD pathogens has resulted in antibiotics primarily being used for BRD prevention. The aim of this study was to develop a mucosal vaccine against the BRD pathogen, Mannheimia haemolytica, using Bacillus subtilis spores as an adjuvant. A chimeric protein (MhCP) containing a tandem repeat of neutralizing epitopes from M. haemolytica leukotoxin A (NLKT) and outer membrane protein PlpE was expressed to produce antigen for adsorption to B. subtilis spores. Adsorption was optimized by comparing varying amounts of antigen and spores, as well as different buffer pH and reaction temperatures. Using the optimal adsorption parameters, spore-bound antigen (Spore-MhCP) was prepared and administered to mice via two mucosal routes (intranasal and intragastric), while intramuscular administration of free MhCP and unvaccinated mice were used as positive and negative control treatments, respectively. Intramuscular administration of MhCP elicited the strongest serum IgG response. However, intranasal immunization of Spore-MhCP generated the best secretory IgA-specific response against both PlpE and NLKT in all samples evaluated (bronchoalveolar lavage, saliva, and feces). Since proliferation of M. haemolytica in the respiratory tract is a prerequisite to lung infection, this spore-based vaccine may offer protection in cattle by limiting colonization and subsequent infection, and Spore-MhCP warrants further evaluation in cattle as a mucosal vaccine against M. haemolytica.


Subject(s)
Cattle Diseases , Mannheimia haemolytica , Cattle , Animals , Mice , Spores, Bacterial , Respiratory System , Bacterial Vaccines , Cattle Diseases/prevention & control
8.
mSystems ; 8(2): e0101622, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36971568

ABSTRACT

To address the emergence of antimicrobial-resistant pathogens in livestock, microbiome-based strategies are increasingly being sought to reduce antimicrobial use. Here, we describe the effects of intranasal application of bacterial therapeutics (BTs) on the bovine respiratory microbiota and used structural equation modeling to investigate the causal networks after BT application. Beef cattle received (i) an intranasal cocktail of previously characterized BT strains, (ii) an injection of metaphylactic antimicrobial (tulathromycin), or (iii) intranasal saline. Despite being transient colonizers, inoculated BT strains induced longitudinal modulation of the nasopharyngeal bacterial microbiota while showing no adverse effect on animal health. The BT-mediated changes in bacteria included reduced diversity and richness and strengthened cooperative and competitive interactions. In contrast, tulathromycin increased bacterial diversity and antibiotic resistance and disrupted bacterial interactions. Overall, a single intranasal dose of BTs can modulate the bovine respiratory microbiota, highlighting that microbiome-based strategies have potential in being utilized to mitigate bovine respiratory disease in feedlot cattle. IMPORTANCE Bovine respiratory disease (BRD) remains the most significant health challenge affecting the North American beef cattle industry and results in $3 billion in economic losses yearly. Current BRD control strategies mainly rely on antibiotics, with metaphylaxis commonly employed to mitigate BRD incidence in commercial feedlots. However, the emergence of multidrug-resistant BRD pathogens threatens to reduce the efficacy of antimicrobials. Here, we investigated the potential use of novel bacterial therapeutics (BTs) to modulate the nasopharyngeal microbiota in beef calves, which are commonly administered metaphylactic antibiotics to mitigate BRD when sourced from auction markets. By direct comparison of the BTs with an antibiotic commonly used for BRD metaphylaxis in feedlots, this study conveyed the potential use of the BTs to modulate respiratory microbiome and thereby improve resistance against BRD in feedlot cattle.


Subject(s)
Cattle Diseases , Microbiota , Cattle , Animals , Pilot Projects , Anti-Bacterial Agents/pharmacology , Nasopharynx , Bacteria , Cattle Diseases/drug therapy
9.
J Hazard Mater ; 443(Pt B): 130136, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36444046

ABSTRACT

Manure can be a source of antibiotic resistance genes (ARGs) that enter the soil. However, previous studies assessing ARG persistence in soil have generally lacked continuity over sampling times, consistency of location, and assessing the impact of discontinuing manure application. We evaluated both short- and long-term ARG accumulation dynamics in soil with a 40-year known history of manure use. Manure application caused a greater abundance of tetracycline, macrolide, and sulfonamide ARGs in the soil. There was an initial spike in ARG abundance resulting from manure bacteria harboring ARGs being introduced to soil, followed by resident soil bacteria out-competing them, which led to ARG dissipation within a year. However, over four decades, annual manure application caused linear or exponential ARG accumulation, and bacteria associated with ARGs differed compared to those in the short term. Eleven years after discontinuing manure application, most soil ARG levels declined but remained elevated. We systematically explored the historical accumulation of ARGs in manured soil, and provide insight into factors that affect their persistence.


Subject(s)
Manure , Soil , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Macrolides
10.
Front Microbiol ; 13: 1020250, 2022.
Article in English | MEDLINE | ID: mdl-36938132

ABSTRACT

Rapid dietary changes, such as switching from high-forage to high-grain diets, can modify the rumen microbiome and initiate gastrointestinal distress, such as bloating. In such cases, feed additives, including prebiotics and live microbials, can be used to mitigate these negative consequences. Bio-Mos® is a carbohydrate-based prebiotic derived from yeast cells that is reported to increase livestock performance. Here, the responses of rumen bacterial cells to Bio-Mos® were quantified, sorted by flow cytometry using fluorescently-labeled yeast mannan, and taxonomically characterized using fluorescence in situ hybridization and 16S rRNA sequencing. Further, to evaluate the effects of bovine-adapted Bacteroides thetaiotaomicron administration as a live microbial with and without Bio-Mos® supplementation, we analyzed microbial fermentation products, changes to carbohydrate profiles, and shifts in microbial composition of an in vitro rumen community. Bio-Mos® was shown to be an effective prebiotic that significantly altered microbial diversity, composition, and fermentation; while addition of B. thetaiotaomicron had no effect on community composition and resulted in fewer significant changes to microbial fermentation. When combined with Bio-Mos®, there were notable, although not significant, changes to major bacterial taxa, along with increased significant changes in fermentation end products. These data suggest a synergistic effect is elicited by combining Bio-Mos® and B. thetaiotaomicron. This protocol provides a new in vitro methodology that could be extended to evaluate prebiotics and probiotics in more complex artificial rumen systems and live animals.

11.
Front Vet Sci ; 9: 1026470, 2022.
Article in English | MEDLINE | ID: mdl-36761402

ABSTRACT

Introduction: Bacterial bronchopneumonia (BP) has been associated with purchasing cattle through auction markets. However, whether auction markets are a source of BP-associated bacterial pathogens is unknown. This study evaluated prevalence, antimicrobial susceptibility, and genetic relatedness (using pulsed-field gel electrophoresis, PFGE) of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from cattle either transported to an auction market prior to feedlot placement (AUC), or directly to a feedlot from a farm (RANC). Methods: Two groups of cattle were enrolled (N = 30 per group) from two separate farms with 15 animals from an individual farm designated as AUC or RANC. Deep nasal swab (DNS) and trans-tracheal aspirates (TTA) were collected on day 0 at weaning (T0) and on day 2 at on-arrival processing at the feedlot (T1). The DNS were also collected on day 9 (T2) and day 30 (T3) after arrival at the feedlot. Results and discussion: In both TTA and DNS, prevalence of bacteria did not differ between AUC and RANC groups (P > 0.05). None of the bacteria isolated at T0 were resistant to antimicrobials and diversity of all bacteria was greatest at T0 and T1. In Group 1 cattle, 100% of P. multocida isolated at T2 and T3 were multi-drug resistant. These isolates were highly related (>90%) according to PFGE, with most being clones. Though limited in size, results for animals evaluated in this study suggested that auction markets were not a major source of resistant BP pathogens, however, horizontal transmission of a multi-resistant strain of P. multocida occurred in a feedlot. Spread of resistant P. multocida was likely due to the selective pressures imposed by feedlot antimicrobial use and encoded resistance by the bacteria.

12.
Microbiome ; 9(1): 23, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33482928

ABSTRACT

Gut microbiomes, such as the microbial community that colonizes the rumen, have vast catabolic potential and play a vital role in host health and nutrition. By expanding our understanding of metabolic pathways in these ecosystems, we will garner foundational information for manipulating microbiome structure and function to influence host physiology. Currently, our knowledge of metabolic pathways relies heavily on inferences derived from metagenomics or culturing bacteria in vitro. However, novel approaches targeting specific cell physiologies can illuminate the functional potential encoded within microbial (meta)genomes to provide accurate assessments of metabolic abilities. Using fluorescently labeled polysaccharides, we visualized carbohydrate metabolism performed by single bacterial cells in a complex rumen sample, enabling a rapid assessment of their metabolic phenotype. Specifically, we identified bovine-adapted strains of Bacteroides thetaiotaomicron that metabolized yeast mannan in the rumen microbiome ex vivo and discerned the mechanistic differences between two distinct carbohydrate foraging behaviors, referred to as "medium grower" and "high grower." Using comparative whole-genome sequencing, RNA-seq, and carbohydrate-active enzyme fingerprinting, we could elucidate the strain-level variability in carbohydrate utilization systems of the two foraging behaviors to help predict individual strategies of nutrient acquisition. Here, we present a multi-faceted study using complimentary next-generation physiology and "omics" approaches to characterize microbial adaptation to a prebiotic in the rumen ecosystem. Video abstract.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Fluorescence , Gastrointestinal Microbiome , Polysaccharides/analysis , Polysaccharides/metabolism , Rumen/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Cattle , Fluorescent Dyes/analysis , Metagenomics
13.
Transbound Emerg Dis ; 68(4): 2209-2218, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33031627

ABSTRACT

Bovine respiratory disease (BRD) has a complex pathogenesis and aetiology, being the costliest disease affecting the cattle industry in North America. In this study, we applied Nanopore-based viral metagenomic sequencing to explore the nasal virome of cattle upon arrival at feedlot and related the findings to the development of BRD. Deep nasal swabs (DNS) from 310 cattle for which BRD outcomes were known (155 cattle developed BRD within 40 days and 155 remained healthy) were included. The most prevalent virus in on-arrival samples was bovine coronavirus (BCV) (45.2%, 140/310), followed by bovine rhinitis virus B (BRBV) (21.9%, 68/310), enterovirus E (EVE) (19.6%, 60/310), bovine parainfluenza virus 3 (BPIV3) (10.3%, 32/310), ungulate tetraparvovirus 1 (UTPV1) (9.7%, 30/310) and influenza D virus (7.1%, 22/310). No relationship was found between BRD development and the number of viruses detected, the presence of any specific individual virus or combination of viruses. Bovine kobuvirus (BKV) was detected in 2.6% of animals (8/310), being the first report of this virus in Canada. Results of this study demonstrate the diversity of viruses in bovine DNS collected upon arrival at feedlot and highlights the need for further research into prediction of BRD development in the context of mixed infections.


Subject(s)
Cattle Diseases , Coronavirus, Bovine , Respiratory Tract Diseases/veterinary , Animals , Canada/epidemiology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Respiratory Tract Diseases/virology , Virome , Viruses
14.
Vet Microbiol ; 248: 108826, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32891954

ABSTRACT

It is generally accepted that as bovine respiratory disease (BRD) develops, bacterial pathogens first proliferate in the nasopharynx and then colonize the lungs, leading to bronchopneumonia. However, such temporal changes have never been definitively demonstrated. Therefore, the objective was to describe the progression of the nasopharyngeal and tracheal bacterial microbiotas of feedlot cattle during development of BRD. Nasopharyngeal swabs and tracheal wash samples were collected from 24 heifers over 20 d after arrival at a feedlot. Heifers were assessed daily and sampled based on reticulo-rumen/rectal temperatures and development of clinical signs of BRD. The study end point for each heifer was either at BRD treatment (BRD group; n = 15) or day 20 if the heifer remained healthy or did not meet BRD treatment criteria (TOL group; n = 9). Total DNA was extracted from each sample and the 16S rRNA gene (V3-V4) sequenced. Alpha and beta diversity were compared between BRD-TOL groups and sampling locations over time. There were no common patterns of change over time in composition or diversity of either the nasopharyngeal or tracheal bacterial microbiotas of cattle that developed BRD. Health status affected bacterial composition (R2 = 0.043; < 0.001), though this effect was low compared to variation among individual animals (R2 = 0.335; < 0.001) and effects of days on feed (R2 = 0.082; < 0.001). Specific bacterial taxa (Moraxella and Mycoplasma dispar) nevertheless appeared to have a potential role in respiratory health.


Subject(s)
Bacteria/classification , Bovine Respiratory Disease Complex/microbiology , Microbiota , Nasopharynx/microbiology , Trachea/microbiology , Animals , Bovine Respiratory Disease Complex/physiopathology , Cattle , DNA, Bacterial/genetics , Disease Progression , Female , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
Viruses ; 12(8)2020 07 28.
Article in English | MEDLINE | ID: mdl-32731471

ABSTRACT

High throughput sequencing is currently revolutionizing the genomics field and providing new approaches to the detection and characterization of microorganisms. The objective of this study was to assess the detection of influenza D virus (IDV) in bovine respiratory tract samples using two sequencing platforms (MiSeq and Nanopore (GridION)), and species-specific qPCR. An IDV-specific qPCR was performed on 232 samples (116 nasal swabs and 116 tracheal washes) that had been previously subject to virome sequencing using MiSeq. Nanopore sequencing was performed on 19 samples positive for IDV by either MiSeq or qPCR. Nanopore sequence data was analyzed by two bioinformatics methods: What's In My Pot (WIMP, on the EPI2ME platform), and an in-house developed analysis pipeline. The agreement of IDV detection between qPCR and MiSeq was 82.3%, between qPCR and Nanopore was 57.9% (in-house) and 84.2% (WIMP), and between MiSeq and Nanopore was 89.5% (in-house) and 73.7% (WIMP). IDV was detected by MiSeq in 14 of 17 IDV qPCR-positive samples with Cq (cycle quantification) values below 31, despite multiplexing 50 samples for sequencing. When qPCR was regarded as the gold standard, the sensitivity and specificity of MiSeq sequence detection were 28.3% and 98.9%, respectively. We conclude that both MiSeq and Nanopore sequencing are capable of detecting IDV in clinical specimens with a range of Cq values. Sensitivity may be further improved by optimizing sequence data analysis, improving virus enrichment, or reducing the degree of multiplexing.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Metagenomics , Orthomyxoviridae Infections/veterinary , Real-Time Polymerase Chain Reaction/methods , Respiratory Tract Infections/veterinary , Thogotovirus/isolation & purification , Animals , Antibodies, Viral/blood , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/virology , Computational Biology , Genome, Viral , Metagenome , Nanopores , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/virology , RNA, Viral/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Sensitivity and Specificity , Thogotovirus/genetics
16.
Microbiome ; 8(1): 91, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522285

ABSTRACT

BACKGROUND: Bacterial bronchopneumonia (BP) is the leading cause of morbidity and mortality in cattle. The nasopharynx is generally accepted as the primary source of pathogenic bacteria that cause BP. However, it has recently been shown in humans that the oropharynx may act as the primary reservoir for pathogens that reach the lung. The objective was therefore to describe the bacterial microbiota present along the entire cattle respiratory tract to determine which upper respiratory tract (URT) niches may contribute the most to the composition of the lung microbiota. METHODS: Seventeen upper and lower respiratory tract locations were sampled from 15 healthy feedlot steer calves. Samples were collected using a combination of swabs, protected specimen brushes, and saline washes. DNA was extracted from each sample and the 16S rRNA gene (V3-V4) was sequenced. Community composition, alpha-diversity, and beta-diversity were compared among sampling locations. RESULTS: Microbiota composition differed across sampling locations, with physiologically and anatomically distinct locations showing different relative abundances of 1137 observed sequence variants (SVs). An analysis of similarities showed that the lung was more similar to the nasopharynx (R-statistic = 0.091) than it was to the oropharynx (R-statistic = 0.709) or any other URT sampling location. Five distinct metacommunities were identified across all samples after clustering at the genus level using Dirichlet multinomial mixtures. This included a metacommunity found primarily in the lung and nasopharynx that was dominated by Mycoplasma. Further clustering at the SV level showed a shared metacommunity between the lung and nasopharynx that was dominated by Mycoplasma dispar. Other metacommunities found in the nostrils, tonsils, and oral microbiotas were dominated by Moraxella, Fusobacterium, and Streptococcus, respectively. CONCLUSIONS: The nasopharyngeal bacterial microbiota is most similar to the lung bacterial microbiota in healthy cattle and therefore may serve as the primary source of bacteria to the lung. This finding indicates that the nasopharynx is likely the most important location that should be targeted when doing bovine respiratory microbiota research. Video abstract.


Subject(s)
Bacteria/isolation & purification , Cattle/microbiology , Microbiota , Nasopharynx/microbiology , Animals , Bacteria/genetics , DNA, Bacterial/genetics , Male , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
17.
Vet Clin North Am Food Anim Pract ; 36(2): 297-320, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32451027

ABSTRACT

The respiratory tract of cattle is colonized by complex bacterial ecosystems also known as bacterial microbiotas. These microbiotas evolve over time and are shaped by numerous factors, including maternal vaginal microbiota, environment, age, diet, parenteral antimicrobials, and stressful events. The resulting microbiota can be diverse and enriched with known beneficial bacteria that can provide colonization resistance against bacterial pathogens or, on the contrary, with opportunistic pathogens that can predispose cattle to respiratory disease. The respiratory microbiota can be modulated by nonantimicrobial approaches to promote health, creating new potential strategies for prevention and treatment of bovine respiratory disease.


Subject(s)
Cattle Diseases/microbiology , Microbiota/physiology , Respiratory System/microbiology , Respiratory Tract Diseases/veterinary , Animals , Bacteria/genetics , Cattle , Respiratory Tract Diseases/microbiology
18.
mSystems ; 5(2)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32127421

ABSTRACT

Six Lactobacillus strains originating from the nasopharyngeal microbiota of cattle were previously characterized in vitro and identified as candidate bacterial therapeutics (BTs) for mitigating the bovine respiratory pathogen Mannheimia haemolytica In the present study, these BT strains were evaluated for their potential to (i) reduce nasal colonization by M. haemolytica, (ii) modulate the nasal microbiota, and (iii) stimulate an immune response in calves experimentally challenged with M. haemolytica. Twenty-four Holstein bull calves (1 to 3 weeks old) received either an intranasal BT cocktail containing 6 Lactobacillus strains (3 × 109 CFU per strain; BT + Mh group) 24 h prior to intranasal M. haemolytica challenge (3 × 108 CFU) or no BTs prior to challenge (Mh, control group). Nasal swab, blood, and transtracheal aspiration samples were collected over the course of 16 days after BT inoculation. Counts of M. haemolytica were determined by culturing, and the nasal and tracheal microbiotas were evaluated using 16S rRNA gene sequencing. Serum cytokines (interleukin-6 [IL-6], IL-8, and IL-10) were quantified by enzyme-linked immunosorbent assay (ELISA). Administration of BT reduced nasal colonization by M. haemolytica (P = 0.02), modified the composition and diversity of the nasal microbiota, and altered interbacterial relationships among the 10 most relatively abundant genera. The BT + Mh calves also had a lower relative abundance of Mannheimia in the trachea (P < 0.01) but similar cytokine levels as Mh calves. This study demonstrated that intranasal BTs developed from the bovine nasopharyngeal Lactobacillus spp. were effective in reducing nasal colonization by M. haemolytica in dairy calves.IMPORTANCE Bovine respiratory disease (BRD) is one of the significant challenges for the modern dairy industry in North America, accounting for 23 to 47% of the total mortality among pre- and postweaned dairy heifers. Mass medication with antibiotics is a common practice to control BRD in dairy cattle. However, the emergence of multidrug-resistant BRD pathogens highlights the importance of developing alternatives to antibiotics for BRD mitigation. Using a targeted approach, we recently identified 6 Lactobacillus strains originating from the bovine respiratory microbiota as candidates to be used as bacterial therapeutics (BTs) for the mitigation of the BRD pathogen Mannheimia haemolytica Here, we demonstrated that intranasal inoculation of the BT strains reduced nasal colonization by M. haemolytica in dairy calves experimentally challenged with this pathogen. This study, for the first time, shows the potential use of intranasal BTs as an alternative to mitigate BRD pathogens in cattle.

19.
Vet Microbiol ; 240: 108478, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31902491

ABSTRACT

Recent studies have shown an increase in antimicrobial-resistant bovine respiratory disease (BRD) pathogens. To investigate the origin of antimicrobial resistance in the respiratory microbiota of beef cattle, three groups (A, B, or C) of 40 calves sourced from different calf-ranches were sampled by deep nasopharyngeal swab (DNS) at the time of first on-ranch vaccination (Time point 1, T1), feedlot entry (Time point 2, T2), and 40 days after feedlot entry (Time point 3, T3; feedlots differed by group). Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni were isolated from DNS samples, tested for antimicrobial susceptibility, and subtyped by pulsed-field gel electrophoresis (PFGE). Antimicrobial resistance genes [tet(H), tet(W), and sul2] were also quantified in DNS metagenomic DNA using PCR. Prevalence of calves positive for BRD pathogens differed among groups and time-points but P. multocida was the most prevalent (61% of calves positive, at least, at one timepoint), followed by M. haemolytica (48%) and H. somni (26%). Most M. haemolytica were susceptible to all antimicrobials (88.6%; n = 70). For P. multocida, the dominant resistance phenotype was against oxytetracycline and neomycin (35.8%). Resistant P. multocida isolates were mainly detected in group C at T3 and had the same PFGE profile. For H. somni, the dominant resistance phenotype was against neomycin (63.3%) and was only observed at T3. The abundance of tet(W) did not change significantly over time (P > 0.05). Abundances of tet(H) and sul2 only increased for group C at T3 (P < 0.05). Overall, this study showed that resistance in the respiratory microbiota of beef calves can increase from calf-ranch to feedlot however, the results can vary by calf-ranch and feedlot.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/drug effects , Cattle Diseases/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Respiratory Tract Infections/veterinary , Animals , Bacterial Typing Techniques , Canada/epidemiology , Cattle , Drug Resistance, Bacterial , Electrophoresis, Gel, Pulsed-Field , Livestock/microbiology , Longitudinal Studies , Metagenomics , Microbial Sensitivity Tests , Nasopharynx/microbiology , Prevalence , Red Meat , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Serogroup , Specimen Handling
20.
J Mol Biol ; 432(4): 1083-1097, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31945375

ABSTRACT

Yeast α-mannan (YM) is a densely branched N-linked glycan that decorates the surface of yeast cell walls. Owing to the high degree of branching, cleavage of the backbone of YM appears to rely on the coupled action of side-chain-cleaving enzymes. Upon examining the genome sequences of bovine-adapted Bacteroides thetaiotaomicron strains, isolated for their ability to degrade YM, we have identified a tandem pair of genes inserted into an orphan pathway predicted to be involved in YM metabolism. Here, we investigated the activity of one of these enzymes, a predicted endo-mannanase from glycoside hydrolase (GH) family 76 (BtGH76-MD40). Purified recombinant BtGH76-MD40 displayed activity on structurally distinct YMs from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Linkage analysis of released oligosaccharide products from S. cerevisiae and S. pombe mannan determined BtGH76-MD40 targets a specific linkage that is conserved in structurally diverse YM substrates. In addition, using two differential derivatization methods, we have shown that there is an absolute requirement for undecorated d-mannopyranose in the -1 subsite. Determination of the BtGH76-MD40 X-ray crystal structure and structural superimposition and molecular docking of a branched alpha-mannopentatose substrate supported these findings. In contrast, BtGH76-MD40 can accommodate extended side chains in the +1 and -2 subsites, highlighting that a single alpha-1,6-mannosyl residue is a prerequisite for activity, and cleavage occurs at the reducing end of the undecorated monosaccharide. Collectively these results demonstrate how acquisition of new enzymes within extant pathways contributes to the functional abilities of saccharolytic bacteria persisting in complex digestive ecosystems.


Subject(s)
Mannans/metabolism , Animals , Bacteroides/metabolism , Catalytic Domain , Cattle , Crystallography, X-Ray , Hydrogen-Ion Concentration , Mannans/chemistry , Molecular Docking Simulation , Protein Conformation , Substrate Specificity , beta-Mannosidase/chemistry , beta-Mannosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...