Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 07 29.
Article in English | MEDLINE | ID: mdl-32723474

ABSTRACT

The cytokine, GDF15, is produced in pathological states which cause cellular stress, including cancer. When over expressed, it causes dramatic weight reduction, suggesting a role in disease-related anorexia. Here, we demonstrate that the GDF15 receptor, GFRAL, is located in a subset of cholecystokinin neurons which span the area postrema and the nucleus of the tractus solitarius of the mouse. GDF15 activates GFRALAP/NTS neurons and supports conditioned taste and place aversions, while the anorexia it causes can be blocked by a monoclonal antibody directed at GFRAL or by disrupting CCK neuronal signalling. The cancer-therapeutic drug, cisplatin, induces the release of GDF15 and activates GFRALAP/NTS neurons, as well as causing significant reductions in food intake and body weight in mice. These metabolic effects of cisplatin are abolished by pre-treatment with the GFRAL monoclonal antibody. Our results suggest that GFRAL neutralising antibodies or antagonists may provide a co-treatment opportunity for patients undergoing chemotherapy.


Subject(s)
Anorexia/genetics , Brain Stem/physiology , Growth Differentiation Factor 15/genetics , Neurons/physiology , Pica/genetics , Signal Transduction , Animals , Cholecystokinin/metabolism , Growth Differentiation Factor 15/administration & dosage , Growth Differentiation Factor 15/metabolism , Male , Mice , Mice, Inbred C57BL , Random Allocation , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage
2.
Am J Physiol Regul Integr Comp Physiol ; 295(2): R463-71, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18525013

ABSTRACT

An analog of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine series (LY255582) exhibits high in vitro binding affinity and antagonist potency for the mu-, delta-, and kappa-opioid receptors. In vivo, LY255582 exhibits potent effects in reducing food intake and body weight in several rodent models of obesity. In the present study, we evaluated the effects of LY255582 to prevent the consumption of a highly palatable (HP) diet (a high-fat/high-carbohydrate diet) both when the food was novel and following daily limited access to the HP diet. Additionally, we examined the effects of consumption of the HP diet and of LY255582 treatment on mesolimbic dopamine (DA) signaling by in vivo microdialysis. Consumption of the HP diet increased extracellular DA levels within the nucleus accumbens (NAc) shell. Increased DA in the NAc shell was not related to the quantity of the HP diet consumed, and the DA response did not habituate following daily scheduled access to the HP diet. Interestingly, treatment with LY255582 inhibited consumption of the HP diet and the HP diet-associated increase in NAc shell DA levels. Moreover, the increased HP diet consumption observed following daily limited access to the HP diet was completely prevented by LY255582 treatment. LY255582 may be a useful tool in understanding the neural mechanisms involved in the reinforcement mechanisms regulating food intake.


Subject(s)
Appetite Regulation/drug effects , Behavior, Animal/drug effects , Cyclohexanes/pharmacology , Dopamine/metabolism , Narcotic Antagonists/pharmacology , Neurons/drug effects , Nucleus Accumbens/drug effects , Piperidines/pharmacology , Animals , Eating/drug effects , Food Preferences , Male , Microdialysis , Neurons/metabolism , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Opioid/metabolism , Reinforcement, Psychology , Time Factors
3.
Psychopharmacology (Berl) ; 184(1): 26-35, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16328376

ABSTRACT

RATIONALE: Cannabinoid type 1 (CB(1)) receptor antagonists are reportedly effective in reducing food intake both preclinically and clinically. This may be due in part to their effects on monoamine release in the brain. The level of central CB(1) receptor occupancy underlying these neurobiological effects is unclear. OBJECTIVES: We explored the relationship between in vivo CB(1) receptor occupancy in the frontal cortex and changes in both monoamine release in the medial prefrontal cortex (mPFC) and feeding behavior in rats in response to two orally administered CB(1) receptor antagonists presently in clinical trials, SR141716A (rimonabant) and SLV319. METHODS: CB(1) receptor occupancy was measured using [(3)H] SR141716A, and these occupancies were related to potencies to mediate increases in dopamine (DA) and norepinephrine (NE) release measured with microdialysis and decreases in consumption of a highly palatable diet (HP). RESULTS: High receptor occupancy levels (>65%) were required to detect increases in monoamine release that were achieved with 3 and 10 mg/kg of SR141716A and 10 mg/kg of SLV319 for DA and 10 mg/kg of SR141716A for NE. Decreases in HP consumption were seen at occupancies higher than 65% for SR141716A that were achieved with 3 and 10 mg/kg. In contrast, decreases in HP consumption were seen at relatively low CB(1) receptor occupancies (11%) for SLV319. CONCLUSIONS: The occupancy method described here is an effective tool for interrelating central CB(1) receptor occupancy with neurobiological actions of CB(1) receptor antagonists and for furthering our understanding of the role of CB(1) receptors in central nervous system physiology and pathology.


Subject(s)
Dopamine/metabolism , Feeding Behavior/drug effects , Frontal Lobe/drug effects , Norepinephrine/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Frontal Lobe/metabolism , Male , Microdialysis , Piperidines/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Pyrazoles/pharmacology , Radioligand Assay , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/metabolism , Rimonabant , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...