Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
PLoS One ; 14(5): e0217418, 2019.
Article in English | MEDLINE | ID: mdl-31150434

ABSTRACT

Carotenoid-containing oil droplets in the avian retina act as cut-off filters to enhance colour discrimination. We report a confocal resonance Raman investigation of the oil droplets of the domestic chicken, Gallus gallus domesticus. We show that all carotenoids present are in a constrained conformation, implying a locus in specific lipid binding sites. In addition, we provide proof of a recent conclusion that all carotenoid-containing droplets contain a mixture of all carotenoids present, rather than only a subset of them-a conclusion that diverges from the previously-held view. Our results have implications for the mechanism(s) giving rise to these carotenoid mixtures in the differently-coloured droplets.


Subject(s)
Carotenoids/chemistry , Chickens/physiology , Color Vision/physiology , Lipid Droplets/chemistry , Retina/cytology , Animals , Carotenoids/analysis , Lipid Droplets/physiology , Microscopy, Confocal , Molecular Conformation , Retina/physiology , Spectrum Analysis, Raman
2.
Proc Natl Acad Sci U S A ; 114(52): E11063-E11071, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229806

ABSTRACT

Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as fucoxanthin-chlorophyll proteins (FCPs), are an exception, displaying surprisingly weak excitonic coupling between their chlorophyll (Chl) a's, despite a high pigment density. Here, we show, using single-molecule spectroscopy, that the FCP complexes of Cyclotella meneghiniana switch frequently into stable, strongly emissive states shifted 4-10 nm toward the red. A few percent of isolated FCPa complexes and ∼20% of isolated FCPb complexes, on average, were observed to populate these previously unobserved states, percentages that agree with the steady-state fluorescence spectra of FCP ensembles. Thus, the complexes use their enhanced sensitivity to static disorder to increase their light-harvesting capability in a number of ways. A disordered exciton model based on the structure of the main plant light-harvesting complex explains the red-shifted emission by strong localization of the excitation energy on a single Chl a pigment in the terminal emitter domain due to very specific pigment orientations. We suggest that the specific construction of FCP gives the complex a unique strategy to ensure that its light-harvesting function remains robust in the fluctuating protein environment despite limited excitonic interactions.


Subject(s)
Diatoms/chemistry , Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Diatoms/metabolism , Light-Harvesting Protein Complexes/metabolism
3.
J Phys Chem Lett ; 7(21): 4380-4384, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27766868

ABSTRACT

The two light, oxygen, and voltage domains of phototropin are blue-light photoreceptor domains that control various functions in plants and green algae. The key step of the light-driven reaction is the formation of a photoadduct between its FMN chromophore and a conserved cysteine, where the canonical reaction proceeds through the FMN triplet state. Here, complete photoreaction mapping of CrLOV2 from Chlamydomonas reinhardtii phototropin and AsLOV2 from Avena sativa phototropin-1 was realized by ultrafast broadband spectroscopy from femtoseconds to microseconds. We demonstrate that in CrLOV2, a direct photoadduct formation channel originates from the initially excited singlet state, in addition to the canonical reaction through the triplet state. This direct photoadduct reaction is coupled by a proton or hydrogen transfer process, as indicated by a significant kinetic isotope effect of 1.4 on the fluorescence lifetime. Kinetic model analyses showed that 38% of the photoadducts are generated from the singlet excited state.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Flavin Mononucleotide/chemistry , Photochemistry/methods , Phototropins/chemistry
4.
Phys Chem Chem Phys ; 18(37): 25852-60, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27604572

ABSTRACT

Photosystem II (PSII) is a huge pigment-protein supercomplex responsible for the primary steps of photosynthesis in green plants. Its light-harvesting antenna exhibits efficient transfer of the absorbed excitation energy to the reaction center and also contains a well-regulated protection mechanism against over-excitation in strong light conditions. The latter is based on conformational changes in antenna complexes that open up excitation decay channels resulting in considerable fluorescence quenching. Meanwhile, fluorescence blinking, observed in single antennas, is likely caused by a similar mechanism. Thus the question arises whether this effect is also present in and relevant to the native supramolecular organization of a fully assembled PSII. To further investigate energy transfer and quenching in single PSII, we performed single-molecule experiments on PSII supercomplexes at 5 °C. Analysis of the fluorescence intensity and mean lifetime allowed us to distinguish detached antennas and specifically analyze PSII supercomplexes. The average fluorescence lifetime in PSII of about 100-150 ps, measured under our extreme excitation conditions, is surprisingly similar to published ensemble lifetime data of photochemical quenching in PSII of a similar size. In our case, this lifetime is nevertheless caused by either one or multiple quenched antennas or by a quencher in the reaction center. The observed reversible light-induced changes in fluorescence intensity on a millisecond timescale are reminiscent of blinking subunits. Our results therefore directly illustrate how environmental control over a fluctuating antenna can regulate light-harvesting in plant photosynthesis.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Photosystem II Protein Complex/chemistry , Chlorophyll/chemistry , Energy Transfer , Fluorescence , Kinetics , Molecular Dynamics Simulation , Photosynthesis , Protein Conformation , Protein Multimerization , Single Molecule Imaging
5.
J Phys Chem Lett ; 5(15): 2512-2515, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25126387

ABSTRACT

Bacteriophytochromes (BphPs) constitute a class of photosensory proteins that toggle between Pr and Pfr functional states through absorption of red and far-red light. The photosensory core of BphPs is composed of PAS, GAF, and PHY domains. Here, we apply FTIR spectroscopy to investigate changes in the secondary structure of Rhodopseudomonas palustris BphP2 (RpBphP2) upon Pr to Pfr photoconversion. Our results indicate conversion from a ß-sheet to an α-helical element in the so-called tongue region of the PHY domain, consistent with recent X-ray structures of Deinococcus radiodurans DrBphP in dark and light states (Takala H.; et al. Nature2014, 5, 245-248). A conserved Asp in the GAF domain that noncovalently connects with the PHY domain and a conserved Pro in the tongue region of the PHY domain are essential for the ß-sheet-to-α-helix conversion.

6.
Photosynth Res ; 119(3): 273-81, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24178513

ABSTRACT

In this study, we demonstrate the selective in vivo detection of diadinoxanthin (DD) and diatoxanthin (DT) in intact Cyclotella cells using resonance Raman spectroscopy. In these cells, we were able to assess both the content of DD and DT carotenoids relative to chlorophyll and their conformation. In addition, the sensitivity and selectivity of the technique allow us to discriminate between different pools of DD on a structural basis, and to follow their fate as a function of the illumination conditions. We report that the additional DD observed when cells are grown in high-light conditions adopts a more twisted conformation than the lower levels of DD present when the cells are grown in low-light (LL) conditions. Thus, we conclude that this pool of DD is more tightly bound to a protein-binding site, which must differ from the one occupied by the DD present in LL conditions.


Subject(s)
Carotenoids/analysis , Diatoms/metabolism , Spectrum Analysis, Raman/methods , Binding Sites , Carotenoids/metabolism , Chromatography, High Pressure Liquid , Diatoms/growth & development , Light , Xanthophylls/analysis , Xanthophylls/metabolism
7.
Biophys J ; 101(4): 934-42, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21843485

ABSTRACT

The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Light , Models, Molecular , Bacteriochlorophylls/chemistry , Carotenoids/chemistry , Carotenoids/metabolism , Electrons , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Protein Binding , Protein Conformation , Proteobacteria/metabolism , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Spinacia oleracea/metabolism , Vibration
8.
Phys Chem Chem Phys ; 13(6): 2307-13, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21103538

ABSTRACT

The light-dependent reduction of protochlorophyllide, a key step in the synthesis of chlorophyll, is catalyzed by the enzyme protochlorophyllide oxidoreductase (POR) and requires two photons (O. A. Sytina et al., Nature, 2008, 456, 1001-1008). The first photon activates the enzyme-substrate complex, a subsequent second photon initiates the photochemistry by triggering the formation of a catalytic intermediate. These two events are characterized by different spectral changes in the infra-red spectral region. Here, we investigate the vibrational frequencies of the POR-bound and unbound substrate, and product, and thus provide a detailed assignment of the spectral changes in the 1800-1250 cm(-1) region associated with the catalytic conversion of PChlide:NADPH:TyrOH into Chlide:NADP(+):TyrO(-). Fluorescence line narrowed spectra of the POR-bound Pchlide reveal a C=O keto group downshifted by more than 20 cm(-1) to a relatively low vibrational frequency of 1653 cm(-1), as compared to the unbound Pchlide, indicating that binding of the chromophore to the protein occurs via strong hydrogen bond(s). The frequencies of the C=C vibrational modes are consistent with a six-coordinated state of the POR-bound Pchlide, suggesting that there are two coordination interactions between the central Mg atom of the chromophore and protein residues, and/or a water molecule. The frequencies of the C=C vibrational modes of Chlide are consistent with a five-coordinated state, indicating a single interaction between the central Mg atom of the chromophore and a water molecule. Rapid-scan FTIR measurements on the Pchlide:POR:NADPH complex at 4 cm(-1) spectral resolution reveal a new band in the 1670 cm(-1) region. The FTIR spectra of the enzyme activation phase indicate involvement of a nucleotide-binding structural motif, and an increased exposure of the protein to solvent after activation.


Subject(s)
NADP/metabolism , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Photochemistry , Catalysis , Enzyme Activation , Kinetics , Light , Spectroscopy, Fourier Transform Infrared
9.
Phys Chem Chem Phys ; 12(32): 9256-66, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20585699

ABSTRACT

The peridinin chlorophyll-a protein (PCP) is a water-soluble, trimeric light harvesting complex found in marine dinoflagellates that binds peridinin and Chl-a in an unusual stoichiometric ratio of 4:1. In this paper, the pathways of excited-state energy transfer and relaxation in PCP were identified by means of femtosecond visible-pump, mid-infrared probe spectroscopy. In addition, excited-state relaxation of peridinin dissolved in organic solvent (CHCl(3) and MeOH) was investigated. For peridinin in solution, the transient IR signatures of the low-lying S(1) and intramolecular charge transfer (ICT) states were similar, in line with a previous ultrafast IR study. In PCP, excitation of the optically allowed S(2) state of peridinin results in ultrafast energy transfer to Chl-a, in competition with internal conversion to low-lying optically forbidden states of peridinin. After vibrational relaxation of the peridinin hot S(1) state in 150 fs, two separate low-lying peridinin singlet excited states are distinguished, assigned to an ICT state and to a slowly transferring, vibrationally relaxed S(1) state. These states exhibit different lactone bleaches, indicating that the ICT and S(1) states localize on distinct peridinins. Energy transfer from the peridinin ICT state to Chl-a constitutes the dominant energy transfer channel and occurs with a time constant of 2 ps. The peridinin S(1) state mainly decays to the ground state through internal conversion, in competition with slow energy transfer to Chl-a. The singlet excited state of Chl-a undergoes intersystem crossing (ISC) to the triplet state on the nanosecond timescale, followed by rapid triplet excitation energy transfer (TEET) from Chl-a to peridinin, whereby no Chl-a triplet is observed but rather a direct rise of the peridinin triplet. The latter contains some Chl-a features due to excitonic coupling of the pigments. The peridinin triplet state shows a lactone bleach mode at 1748 cm(-1), while that of the peridinin ICT state is located at 1745 cm(-1), indicating that the main channels of singlet and triplet energy transfer in PCP proceed through distinct peridinins. Our results are consistent with an energy transfer scheme where the ICT state mainly localizes on Per621/611 and Per623/613, the S(1) state on Per622/612 and the triplet state on Per624/614.


Subject(s)
Carotenoids/chemistry , Chlorophyllides/chemistry , Energy Transfer , Molecular Conformation , Solvents/chemistry , Spectrophotometry, Infrared , Time Factors
10.
Biochemistry ; 49(23): 4752-9, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20459101

ABSTRACT

The bacterium Caulobacter crescentus encodes a two-component signaling protein, LovK, that contains an N-terminal photosensory LOV domain coupled to a C-terminal histidine kinase. LovK binds a flavin cofactor, undergoes a reversible photocycle, and displays regulated ATPase and autophosphorylation activity in response to visible light. Femtosecond to nanosecond visible absorption spectroscopy demonstrates congruence between full-length LovK and isolated LOV domains in the mechanism and kinetics of light-dependent cysteinyl-C4(a) adduct formation and rupture, while steady-state absorption and fluorescence line narrowing (FLN) spectroscopies reveal unique features in the electronic structure of the LovK flavin cofactor. In agreement with other sensor histidine kinases, ATP binds specifically to LovK with micromolar affinity. However, ATP binding to the histidine kinase domain of LovK has no apparent effect on global protein structure as assessed by differential Fourier transform infrared (FTIR) spectroscopy. Cysteinyl adduct formation results in only minor changes in the structure of LovK as determined by differential FTIR. This study provides insight into the structural underpinnings of LOV-mediated signal transduction in the context of a full-length histidine kinase. In particular, the data provide evidence for a model in which small changes in the tertiary/quaternary structure of LovK, as triggered by photon detection in the N-terminal LOV sensory domain, are sufficient to regulate histidine kinase activity.


Subject(s)
Bacterial Proteins/chemistry , Caulobacter crescentus/enzymology , Light Signal Transduction/physiology , Light , Protein Kinases/chemistry , Bacterial Proteins/metabolism , Conserved Sequence , Electrons , Enzyme Activation , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Histidine Kinase , Protein Binding , Protein Kinases/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary
11.
Biophys J ; 97(1): 227-37, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19580760

ABSTRACT

Phototropins, major blue-light receptors in plants, are sensitive to blue light through a pair of flavin mononucleotide (FMN)-binding light oxygen and voltage (LOV) domains, LOV1 and LOV2. LOV2 undergoes a photocycle involving light-driven covalent adduct formation between a conserved cysteine and the FMN C(4a) atom. Here, the primary reactions of Avena sativa phototropin 1 LOV2 (AsLOV2) were studied using ultrafast mid-infrared spectroscopy and quantum chemistry. The singlet excited state (S1) evolves into the triplet state (T1) with a lifetime of 1.5 ns at a yield of approximately 50%. The infrared signature of S1 is characterized by absorption bands at 1657 cm(-1), 1495-1415 cm(-1), and 1375 cm(-1). The T1 state shows infrared bands at 1657 cm(-1), 1645 cm(-1), 1491-1438 cm(-1), and 1390 cm(-1). For both electronic states, these bands are assigned principally to C=O, C=N, C-C, and C-N stretch modes. The overall downshifting of C=O and C=N bond stretch modes is consistent with an overall bond-order decrease of the conjugated isoalloxazine system upon a pi-pi* transition. The configuration interaction singles (CIS) method was used to calculate the vibrational spectra of the S1 and T1 excited pipi* states, as well as respective electronic energies, structural parameters, electronic dipole moments, and intrinsic force constants. The harmonic frequencies of S1 and T1, as calculated by the CIS method, are in satisfactory agreement with the evident band positions and intensities. On the other hand, CIS calculations of a T1 cation that was protonated at the N(5) site did not reproduce the experimental FMN T1 spectrum. We conclude that the FMN T1 state remains nonprotonated on a nanosecond timescale, which rules out an ionic mechanism for covalent adduct formation involving cysteine-N(5) proton transfer on this timescale. Finally, we observed a heterogeneous population of singly and doubly H-bonded FMN C(4)=O conformers in the dark state, with stretch frequencies at 1714 cm(-1) and 1694 cm(-1), respectively.


Subject(s)
Flavoproteins/chemistry , Plant Proteins/chemistry , Avena , Cryptochromes , Flavins/chemistry , Hydrogen Bonding , Infrared Rays , Kinetics , Models, Molecular , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis , Vibration
12.
Biophys J ; 97(1): 238-47, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19580761

ABSTRACT

Phototropins control phototropism, chloroplast movement, stomatal opening, and leaf expansion in plants. Phototropin 1 (phot1) is composed of a kinase domain linked to two blue light-sensing domains, LOV2 and LOV1, which bind flavin mononucleotide. Disruption of the interaction between the LOV2 domain and a helical segment named Jalpha, joining LOV to the kinase domain, induces the subsequent kinase activity of phototropin 1 and further-downstream signal transduction. Here we study the effects of temperature and hydration on the light-triggered signal propagation in the phot1 LOV2 domain of Avena sativa (AsLOV2/Jalpha), using Fourier transform infrared spectroscopy to unravel part of the molecular mechanism of phototropin 1. We report that AsLOV2/Jalpha shows an intense signal in the amide I and II regions, arising mainly from beta-sheet changes and the unbinding of the Jalpha helix from the Per-ARNT-Sim core and its subsequent partial unfolding. Importantly, these structural changes only occur under conditions of full hydration and at temperatures above 280 K. We characterized a newly isolated low-hydration intermediate that shows a downshift of high-frequency amide I signals and that possibly corresponds to loop tightening, without large beta-sheet or Jalpha structural changes. In addition, we report a heterogeneity in AsLOV2/Jalpha involving two different C(4)=O conformer populations, coexisting in the dark state and characterized by C(4)=O carbonyl frequencies at 1712 cm(-1) and 1694 cm(-1) that are attributable to a single H-bond and two H-bonds at this site, respectively. Such conformers display slightly shifted absorption spectra and cause a splitting of the 475-nm band in the ultraviolet/visible spectra of LOV domains at low temperature.


Subject(s)
Flavoproteins/chemistry , Plant Proteins/chemistry , Avena , Cryptochromes , Hot Temperature , Hydrogen Bonding , Light , Models, Chemical , Models, Molecular , Protein Conformation , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Spectroscopy, Fourier Transform Infrared , Temperature , Water/chemistry
13.
Nature ; 456(7224): 1001-4, 2008 Dec 18.
Article in English | MEDLINE | ID: mdl-19092933

ABSTRACT

The role of conformational changes in explaining the huge catalytic power of enzymes is currently one of the most challenging questions in biology. Although it is now widely regarded that enzymes modulate reaction rates by means of short- and long-range protein motions, it is almost impossible to distinguish between conformational changes and catalysis. We have solved this problem using the chlorophyll biosynthetic enzyme NADPH:protochlorophyllide (Pchlide) oxidoreductase, which catalyses a unique light-driven reaction involving hydride and proton transfers. Here we report that prior excitation of the enzyme-substrate complex with a laser pulse induces a more favourable conformation of the active site, enabling the coupled hydride and proton transfer reactions to occur. This effect, which is triggered during the Pchlide excited-state lifetime and persists on a long timescale, switches the enzyme into an active state characterized by a high rate and quantum yield of formation of a catalytic intermediate. The corresponding spectral changes in the mid-infrared following the absorption of one photon reveal significant conformational changes in the enzyme, illustrating the importance of flexibility and dynamics in the structure of enzymes for their function.


Subject(s)
Light , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Oxidoreductases Acting on CH-CH Group Donors/radiation effects , Synechocystis/enzymology , Biocatalysis/radiation effects , Catalytic Domain/radiation effects , Models, Molecular , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Protein Conformation/radiation effects , Protons , Structure-Activity Relationship , Time Factors
14.
Phys Chem Chem Phys ; 10(44): 6693-702, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-18989482

ABSTRACT

In LOV2, the blue-light sensitive domain of phototropin, the primary photophysical event involves intersystem crossing (ISC) from the singlet-excited state to the triplet state. The ISC rate is enhanced in LOV2 as compared to flavin mononucleotide (FMN) in solution, which likely results from a heavy-atom effect of a nearby conserved cysteine, C450. Here, we applied fluorescence line narrowing (FLN), resonance Raman (RR) and Fourier-transform infrared (FTIR) spectroscopy to investigate the electronic structure of FMN bound to Avena sativa LOV2 (AsLOV2), its C450A mutant and Adiantum LOV2 (Phy3LOV2). We demonstrate that FLN is the method of choice to obtain accurate vibrational spectra on highly fluorescent flavoproteins. The vibrational spectrum of AsLOV2-C450A showed small but significant shifts with respect to those of wild type AsLOV2 and Phy3LOV2, with a systematic down-shift of Ring I vibrations, upshifts of Ring II and III vibrations and an upshift of the C2=O mode. These trends are similar to those in FMN model systems with an electron-donating group substituted at Ring I, known to induce a quinoid character to the electronic structure of oxidized flavin. Thus, enhancement of the ISC rate in LOV2 is induced through weak electron donation by the cysteine which mixes the FMN pi-electrons with the heavy sulfur orbitals, manifesting itself in a quinoid character of the ground electronic state of oxidized FMN. The proximity of the cysteine to FMN thus not only enables formation of a covalent adduct between FMN and cysteine, but also facilitates the rapid electronic formation of the reactive FMN triplet state.


Subject(s)
Cysteine/chemistry , Cysteine/metabolism , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Flavoproteins/chemistry , Flavoproteins/metabolism , Avena/chemistry , Cryptochromes , Flavins/chemistry , Flavins/metabolism , Hydrogen Bonding , Molecular Structure , Oxidation-Reduction , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
15.
Biophys J ; 95(1): 312-21, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18339766

ABSTRACT

The flavoprotein AppA from Rhodobacter sphaeroides contains an N-terminal, FAD-binding BLUF photoreceptor domain. Upon illumination, the AppA BLUF domain forms a signaling state that is characterized by red-shifted absorbance by 10 nm, a state known as AppA(RED). We have applied ultrafast spectroscopy on the photoaccumulated AppA(RED) state to investigate the photoreversible properties of the AppA BLUF domain. On light absorption by AppA(RED), the FAD singlet excited state FAD(RED)* decays monoexponentially in 7 ps to form the neutral semiquinone radical FADH(*), which subsequently decays to the original AppA(RED) molecular ground state in 60 ps. Thus, FAD(RED)* is deactivated rapidly via electron and proton transfer, probably from the conserved tyrosine Tyr-21 to FAD, followed by radical-pair recombination. We conclude that, in contrast to many other photoreceptors, the AppA BLUF domain is not photoreversible and does not enter alternative reaction pathways upon absorption of a second photon. To explain these properties, we propose that a molecular configuration is formed upon excitation of AppA(RED) that corresponds to a forward reaction intermediate previously identified for the dark-state BLUF photoreaction. Upon excitation of AppA(RED), the BLUF domain therefore enters its forward reaction coordinate, readily re-forming the AppA(RED) ground state and suppressing reverse or side reactions. The monoexponential decay of FAD* indicates that the FAD-binding pocket in AppA(RED) is significantly more rigid than in dark-state AppA. Steady-state fluorescence experiments on wild-type, W104F, and W64F mutant BLUF domains show tryptophan fluorescence maxima that correspond with a buried conformation of Trp-104 in dark and light states. We conclude that Trp-104 does not become exposed to solvent during the BLUF photocycle.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Flavoproteins/chemistry , Flavoproteins/ultrastructure , Models, Chemical , Models, Molecular , Photochemistry/methods , Bacterial Proteins/radiation effects , Computer Simulation , Flavoproteins/radiation effects , Light , Protein Conformation/radiation effects , Protein Structure, Tertiary/radiation effects , Radiation Dosage
16.
Biophys J ; 93(6): 2118-28, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17483182

ABSTRACT

This work investigates the interaction of carotenoid and chlorophyll triplet states in the peridinin-chlorophyll-a-protein (PCP) of Amphidinium carterae using step-scan Fourier transform infrared spectroscopy. We identify two carotenoid triplet state lifetimes of approximately 13 and approximately 42 mus in the spectral region between 1800 and 1100 cm(-1) after excitation of the 'blue' and 'red' peridinin (Per) conformers and the Q(y) of chlorophyll-a (Chl-a). The fast and slow decaying triplets exhibit different spectral signatures in the carbonyl region. The fast component generated at all excitation wavelengths is from a major conformer with a lactone stretching mode bleach at 1745 cm(-1). One (1720 cm(-1)) and two (1720 cm(-1) and 1741 cm(-1)) different Per conformers are observed for the slow component upon 670- and 530-480-nm excitation, respectively. The above result implies that (3)Per triplets are formed via two different pathways, corroborating and complementing visible triplet-singlet (T-S) spectra (Kleima et al., Biochemistry (2000), 39, 5184). Surprisingly, all difference spectra show that Per and Chl-a modes are simultaneously present during the (3)Per decay, implying significant involvement of (3)Chl-a in the (3)Per state. We suggest that this Per-Chl-a interaction via a delocalized triplet state lowers the (3)Per energy and thus provides a general, photoprotection mechanism for light-harvesting antenna complexes.


Subject(s)
Carotenoids/chemistry , Light-Harvesting Protein Complexes/chemistry , Protozoan Proteins/chemistry , Animals , Biophysical Phenomena , Biophysics , Dinoflagellida/chemistry , Models, Chemical , Molecular Structure , Photochemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics
17.
Biochemistry ; 46(11): 3129-37, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17311415

ABSTRACT

Phototropins are autophosphorylating serine/threonine kinases responsible for blue-light perception in plants; their action gives rise to phototropism, chloroplast relocation, and opening of stomatal guard cells. The kinase domain constitutes the C-terminal part of Avena sativa phototropin 1. The N-terminal part contains two light, oxygen, or voltage (LOV) sensing domains, LOV1 and LOV2; each binds a flavin mononucleotide (FMN) chromophore (lambdamax = 447 nm, termed D447) and forms the light-sensitive domains, of which LOV2 is the principal component. Blue-light absorption produces a covalent adduct between a very conserved nearby cysteine residue and the C(4a) atom of the FMN moiety via the triplet state of the flavin. The covalent adduct thermally decays to regenerate the D447 dark state, with a rate that may vary by several orders of magnitude between different species. We report that the imidazole base can act as a very efficient enhancer of the dark recovery of A. sativa phot1 LOV2 (AsLOV2) and some other well-characterized LOV domains. Imidazole accelerates the thermal decay of AsLOV2 by 3 orders of magnitude in the submolar concentration range, via a base-catalyzed mechanism involving base abstraction of the FMN N(5)-H adduct state and subsequent reprotonation of the reactive cysteine. The LOV2 crystal structure suggests that the imidazole molecules may act from a cavity located in the vicinity of the FMN, explaining its high efficiency, populated through a channel connecting the cavity to the protein surface. Use of pH titration and chemical inactivation by diethyl pyrocarbonate (DEPC) suggests that histidines located at the surface of the LOV domain act as base catalysts via an as yet unidentified H-bond network, operating at a rate of (55 s)-1 at pH 8. In addition, molecular processes other than histidine-mediated base catalysis contibute significantly to the total thermal decay rate of the adduct and operate at a rate constant of (65 s)-1, leading to a net adduct decay time constant of 30 s at pH 8.


Subject(s)
Flavoproteins/physiology , Imidazoles/chemistry , Protein Serine-Threonine Kinases/physiology , Amino Acid Sequence , Avena/metabolism , Darkness , Diethyl Pyrocarbonate/chemistry , Flavin Mononucleotide/chemistry , Flavoproteins/chemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Phototropism , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...