Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Bot ; 110(9): e16214, 2023 09.
Article in English | MEDLINE | ID: mdl-37475703

ABSTRACT

PREMISE: Plants survive in habitats with limited resource availability and contrasting environments by responding to variation in environmental factors through morphophysiological traits related to species performance in different ecosystems. However, how different plant strategies influence the megadiversity of tropical species has remained a knowledge gap. METHODS: We analyzed variations in 27 morphophysiological traits of leaves and secondary xylem in Erythroxylum pulchrum and Tapirira guianensis, which have the highest absolute dominance in these physiognomies and occur together in areas of restinga and dense ombrophilous forest to infer water-transport strategies of Atlantic Forest woody plants. RESULTS: The two species presented different sets of morphophysiological traits, strategies to avoid embolism and ensure water transport, in different phytophysiognomies. Tapirira guianensis showed possible adaptations influenced by phytophysiognomy, while E. pulchrum showed less variation in the set of characteristics between different phytophysiognomies. CONCLUSIONS: Our results provide essential tools to understand how the environment can modulate morphofunctional traits and how each species adjusts differently to adapt to different phytophysiognomies. In this sense, the results for these species reveal new species-specific responses in the tropical forest. Such knowledge is a prerequisite to predict future development of the most vulnerable forests as climate changes.


Subject(s)
Ecosystem , Trees , Trees/physiology , Tropical Climate , Water/physiology , Forests , Plant Leaves/physiology
2.
Physiol Plant ; 175(2): e13877, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36811487

ABSTRACT

Callose is a polymer deposited on the cell wall and is necessary for plant growth and development. Callose is synthesized by genes from the glucan synthase-like family (GSL) and dynamically responds to various types of stress. Callose can inhibit pathogenic infection, in the case of biotic stresses, and maintain cell turgor and stiffen the plant cell wall in abiotic stresses. Here, we report the identification of 23 GSL genes (GmGSL) in the soybean genome. We performed phylogenetic analyses, gene structure prediction, duplication patterns, and expression profiles on several RNA-Seq libraries. Our analyses show that WGD/Segmental duplication contributed to expanding this gene family in soybean. Next, we analyzed the callose responses in soybean under abiotic and biotic stresses. The data show that callose is induced by both osmotic stress and flagellin 22 (flg22) and is related to the activity of ß-1,3-glucanases. By using RT-qPCR, we evaluated the expression of GSL genes during the treatment of soybean roots with mannitol and flg22. The GmGSL23 gene was upregulated in seedlings treated with osmotic stress or flg22, showing the essential role of this gene in the soybean defense response to pathogenic organisms and osmotic stress. Our results provide an important understanding of the role of callose deposition and regulation of GSL genes in response to osmotic stress and flg22 infection in soybean seedlings.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Seedlings/metabolism , Glycine max/metabolism , Flagellin/genetics , Flagellin/metabolism , Phylogeny , Mannitol/metabolism , Gene Expression Regulation, Plant
3.
Planta ; 250(4): 1325-1337, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31273443

ABSTRACT

MAIN CONCLUSION: Identification of the structural changes and cell wall-related genes likely involved in cell wall extension, cellular water balance and cell wall biosynthesis on embryonic axes during germination of soybean seeds. Cell wall is a highly organized and dynamic structure that provides mechanical support for the cell. During seed germination, the cell wall is critical for cell growth and seedling establishment. Although seed germination has been widely studied in several species, key aspects regarding the regulation of cell wall dynamics in germinating embryonic axes remain obscure. Here, we characterize the gene expression patterns of cell wall pathways and investigate their impact on the cell wall dynamics of embryonic axes of germinating soybean seeds. We found 2143 genes involved in cell wall biosynthesis and assembly in the soybean genome. Key cell wall genes were highly expressed at specific germination stages, such as expansins, UDP-Glc epimerases, GT family, cellulose synthases, peroxidases, arabinogalactans, and xyloglucans-related genes. Further, we found that embryonic axes grow through modulation of these specific cell wall genes with no increment in biomass. Cell wall structural analysis revealed a defined pattern of cell expansion and an increase in cellulose content during germination. In addition, we found a clear correlation between these structural changes and expression patterns of cell wall genes during germination. Taken together, our results provide a better understanding of the complex transcriptional regulation of cell wall genes that drive embryonic axes growth and expansion during soybean germination.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant/genetics , Glycine max/genetics , Cell Wall/metabolism , Germination , Seedlings/genetics , Seedlings/growth & development , Seeds/genetics , Seeds/growth & development , Glycine max/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL