Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 19(1): 101, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101077

ABSTRACT

BACKGROUND: Bacterial chemotaxis, the ability of motile bacteria to navigate gradients of chemicals, plays key roles in the establishment of various plant-microbe associations, including those that benefit plant growth and crop productivity. The motile soil bacterium Azospirillum brasilense colonizes the rhizosphere and promotes the growth of diverse plants across a range of environments. Aerotaxis, or the ability to navigate oxygen gradients, is a widespread behavior in bacteria. It is one of the strongest behavioral responses in A. brasilense and it is essential for successful colonization of the root surface. Oxygen is one of the limiting nutrients in the rhizosphere where density and activity of organisms are greatest. The aerotaxis response of A. brasilense is also characterized by high precision with motile cells able to detect narrow regions in a gradient where the oxygen concentration is low enough to support their microaerobic lifestyle and metabolism. RESULTS: Here, we present a mathematical model for aerotaxis band formation that captures most critical features of aerotaxis in A. brasilense. Remarkably, this model recapitulates experimental observations of the formation of a stable aerotactic band within 2 minutes of exposure to the air gradient that were not captured in previous modeling efforts. Using experimentally determined parameters, the mathematical model reproduced an aerotactic band at a distance from the meniscus and with a width that matched the experimental observation. CONCLUSIONS: Including experimentally determined parameter values allowed us to validate a mathematical model for aerotactic band formation in spatial gradients that recapitulates the spatiotemporal stability of the band and its position in the gradient as well as its overall width. This validated model also allowed us to capture the range of oxygen concentrations the bacteria prefer during aerotaxis, and to estimate the effect of parameter values (e.g. oxygen consumption rate), both of which are difficult to obtain in experiments.


Subject(s)
Azospirillum brasilense/growth & development , Oxygen/metabolism , Azospirillum brasilense/metabolism , Chemotaxis , Models, Theoretical , Rhizosphere
2.
Biophys J ; 116(8): 1527-1537, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30975454

ABSTRACT

Chemotaxis, together with motility, helps bacteria foraging in their habitat. Motile bacteria exhibit a variety of motility patterns, often controlled by chemotaxis, to promote dispersal. Motility in many bacteria is powered by a bidirectional flagellar motor. The flagellar motor has been known to briefly pause during rotation because of incomplete reversals or stator detachment. Transient pauses were previously observed in bacterial strains lacking CheY, and these events could not be explained by incomplete motor reversals or stator detachment. Here, we systematically analyzed swimming trajectories of various chemotaxis mutants of the monotrichous soil bacterium, Azospirillum brasilense. Like other polar flagellated bacterium, the main swimming pattern in A. brasilense is run and reverse. A. brasilense also uses run-pauses and putative run-reverse-flick-like swimming patterns, although these are rare events. A. brasilense mutant derivatives lacking the chemotaxis master histidine kinase, CheA4, or the central response regulator, CheY7, also showed transient pauses. Strikingly, the frequency of transient pauses increased dramatically in the absence of CheY4. Our findings collectively suggest that reversals and pauses are controlled through signaling by distinct CheY homologs, and thus are likely to be functionally important in the lifestyle of this soil organism.


Subject(s)
Azospirillum brasilense/cytology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chemotaxis , Sequence Homology, Amino Acid , Amino Acid Sequence , Azospirillum brasilense/metabolism , Rotation , Swimming
3.
Am J Vet Res ; 79(6): 650-657, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30085864

ABSTRACT

OBJECTIVE To describe qualitative blinking patterns and determine quantitative kinematic variables of eyelid motion in ophthalmologically normal horses. ANIMALS 10 adult mares. PROCEDURES High-resolution videography was used to film blinking behavior. Videotapes were analyzed for mean blink rate, number of complete versus incomplete blinks, number of unilateral versus bilateral blinks, and subjective descriptions of blinking patterns. One complete blink for each horse was analyzed with image-analysis software to determine the area of corneal coverage as a function of time during the blink and to calculate eyelid velocity and acceleration during the blink. RESULTS Mean ± SD blink rate was 18.9 ± 5.5 blinks/min. Blinks were categorized as minimal incomplete (29.7 ± 15.6%), moderate incomplete (33.5 ± 5.9%), complete (30.8 ± 13.1%), and complete squeeze (6.0 ± 2.8%); 22.6 ± 9.0% of the blinks were unilateral, and 77.3 ± 9.1% were bilateral. Mean area of exposed cornea at blink initiation was 5.89 ± 1.02 cm2. Mean blink duration was 0.478 seconds. Eyelid closure was approximately twice as rapid as eyelid opening (0.162 and 0.316 seconds, respectively). Deduced maximum velocity of eyelid closure and opening was -16.5 and 7.40 cm/s, respectively. Deduced maximum acceleration of eyelid closure and opening was -406.0 and -49.7 cm/s2, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Kinematic variables of ophthalmologically normal horses were similar to values reported for humans. Horses had a greater percentage of complete squeeze blinks, which could increase tear film stability. Blinking kinematics can be assessed as potential causes of idiopathic keratopathies in horses.


Subject(s)
Blinking , Cornea/diagnostic imaging , Horses/physiology , Tears/chemistry , Acceleration , Animals , Biomechanical Phenomena , Eyelids , Female , Image Processing, Computer-Assisted , Models, Theoretical , Ophthalmology , Software , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...