Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352439

ABSTRACT

While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examined interspecies differences in RNA-protein interactions using the conserved neuronal RNA binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse. Unexpectedly, even when transcript-level binding was conserved across species differential motif usage was prevalent. To understand the biochemical basis of UNK-RNA interactions, we reconstituted the human and mouse UNK-RNA interactomes using a high-throughput biochemical assay. We uncover detailed features driving binding, show that in vivo patterns are captured in vitro, find that highly conserved sites are the strongest bound, and associate binding strength with downstream regulation. Furthermore, subtle sequence differences surrounding motifs are key determinants of species-specific binding. We highlight the complex features driving protein-RNA interactions and how these evolve to confer species-specific regulation.

2.
Cancer Res ; 79(8): 1952-1966, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30755444

ABSTRACT

Acidosis is a fundamental feature of the tumor microenvironment, which directly regulates tumor cell invasion by affecting immune cell function, clonal cell evolution, and drug resistance. Despite the important association of tumor microenvironment acidosis with tumor cell invasion, relatively little is known regarding which areas within a tumor are acidic and how acidosis influences gene expression to promote invasion. Here, we injected a labeled pH-responsive peptide to mark acidic regions within tumors. Surprisingly, acidic regions were not restricted to hypoxic areas and overlapped with highly proliferative, invasive regions at the tumor-stroma interface, which were marked by increased expression of matrix metalloproteinases and degradation of the basement membrane. RNA-seq analysis of cells exposed to low pH conditions revealed a general rewiring of the transcriptome that involved RNA splicing and enriched for targets of RNA binding proteins with specificity for AU-rich motifs. Alternative splicing of Mena and CD44, which play important isoform-specific roles in metastasis and drug resistance, respectively, was sensitive to histone acetylation status. Strikingly, this program of alternative splicing was reversed in vitro and in vivo through neutralization experiments that mitigated acidic conditions. These findings highlight a previously underappreciated role for localized acidification of tumor microenvironment in the expression of an alternative splicing-dependent tumor invasion program. SIGNIFICANCE: This study expands our understanding of acidosis within the tumor microenvironment and indicates that acidosis induces potentially therapeutically actionable changes to alternative splicing.


Subject(s)
Acids/adverse effects , Alternative Splicing , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Transcriptome/drug effects , Tumor Microenvironment/drug effects , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/chemically induced , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Mol Cell ; 70(5): 854-867.e9, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29883606

ABSTRACT

RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif.


Subject(s)
RNA Recognition Motif Proteins/metabolism , RNA/metabolism , Base Sequence , Binding Sites , High-Throughput Nucleotide Sequencing , Humans , Nucleic Acid Conformation , Nucleotide Motifs , Protein Binding , RNA/chemistry , RNA/genetics , RNA Recognition Motif Proteins/chemistry , RNA Recognition Motif Proteins/genetics , Structure-Activity Relationship
4.
Mol Cell ; 64(2): 294-306, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27720642

ABSTRACT

Many RNA binding proteins (RBPs) bind specific RNA sequence motifs, but only a small fraction (∼15%-40%) of RBP motif occurrences are occupied in vivo. To determine which contextual features discriminate between bound and unbound motifs, we performed an in vitro binding assay using 12,000 mouse RNA sequences with the RBPs MBNL1 and RBFOX2. Surprisingly, the strength of binding to motif occurrences in vitro was significantly correlated with in vivo binding, developmental regulation, and evolutionary age of alternative splicing. Multiple lines of evidence indicate that the primary context effect that affects binding in vitro and in vivo is RNA secondary structure. Large-scale combinatorial mutagenesis of unfavorable sequence contexts revealed a consistent pattern whereby mutations that increased motif accessibility improved protein binding and regulatory activity. Our results indicate widespread inhibition of motif binding by local RNA secondary structure and suggest that mutations that alter sequence context commonly affect RBP binding and regulation.


Subject(s)
Algorithms , DNA-Binding Proteins/chemistry , RNA Splicing Factors/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Alternative Splicing , Animals , Binding Sites , Cattle , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Macaca , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mutation , Neurons/cytology , Neurons/metabolism , Nucleic Acid Conformation , Nucleotide Motifs , Protein Binding , Protein Interaction Domains and Motifs , RNA/genetics , RNA/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Software
5.
Genome Biol ; 16: 287, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26694591

ABSTRACT

BACKGROUND: Differences in gene expression drive phenotypic differences between species, yet major organs and tissues generally have conserved gene expression programs. Several comparative transcriptomic studies have observed greater similarity in gene expression between homologous tissues from different vertebrate species than between diverse tissues of the same species. However, a recent study by Lin and colleagues reached the opposite conclusion. These studies differed in the species and tissues analyzed, and in technical details of library preparation, sequencing, read mapping, normalization, gene sets, and clustering methods. RESULTS: To better understand gene expression evolution we reanalyzed data from four studies, including that of Lin, encompassing 6-13 tissues each from 11 vertebrate species using standardized mapping, normalization, and clustering methods. An analysis of independent data showed that the set of tissues chosen by Lin et al. were more similar to each other than those analyzed by previous studies. Comparing expression in five common tissues from the four studies, we observed that samples clustered exclusively by tissue rather than by species or study, supporting conservation of organ physiology in mammals. Furthermore, inter-study distances between homologous tissues were generally less than intra-study distances among different tissues, enabling informative meta-analyses. Notably, when comparing expression divergence of tissues over time to expression variation across 51 human GTEx tissues, we could accurately predict the clustering of expression for arbitrary pairs of tissues and species. CONCLUSIONS: These results provide a framework for the design of future evolutionary studies of gene expression and demonstrate the utility of comparing RNA-seq data across studies.


Subject(s)
Evolution, Molecular , Transcriptome , Animals , Humans , Organ Specificity , Species Specificity , Vertebrates
6.
Cell Rep ; 10(12): 1992-2005, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25801031

ABSTRACT

Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species- and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5' UTRs and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues in which the exon was included. Increased expression correlated with the level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Altogether, these findings suggest that increased splicing at the 5' ends of genes enhances expression and that changes in 5' end splicing alter gene expression between tissues and between species.


Subject(s)
Evolution, Molecular , Exons/genetics , RNA Splicing/genetics , Alternative Splicing/genetics , Animals , Base Sequence , Birds/genetics , Introns , Mice , Promoter Regions, Genetic/genetics , Sequence Deletion
7.
Genome Res ; 22(12): 2356-67, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22722344

ABSTRACT

The order of genes in eukaryotic genomes has generally been assumed to be neutral, since gene order is largely scrambled over evolutionary time. Only a handful of exceptional examples are known, typically involving deeply conserved clusters of tandemly duplicated genes (e.g., Hox genes and histones). Here we report the first systematic survey of microsynteny conservation across metazoans, utilizing 17 genome sequences. We identified nearly 600 pairs of unrelated genes that have remained tightly physically linked in diverse lineages across over 600 million years of evolution. Integrating sequence conservation, gene expression data, gene function, epigenetic marks, and other genomic features, we provide extensive evidence that many conserved ancient linkages involve (1) the coordinated transcription of neighboring genes, or (2) genomic regulatory blocks (GRBs) in which transcriptional enhancers controlling developmental genes are contained within nearby bystander genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos, which provided further evidence of putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results suggest that ancient genomic functional associations are far more common than previously thought-involving ∼12% of the ancestral bilaterian genome-and that cis-regulatory constraints are crucial in determining metazoan genome architecture.


Subject(s)
Conserved Sequence/genetics , Genetic Association Studies/methods , Synteny , Animals , Caenorhabditis elegans/genetics , Cell Line , Chromatin Immunoprecipitation , Drosophila melanogaster/genetics , Enhancer Elements, Genetic , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Developmental , Gene Order , Genes, Homeobox , Genomics/methods , Humans , Microarray Analysis , Zebrafish/embryology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...