Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35011167

ABSTRACT

Multiple studies have quantified the production differences of Hereford Angus crossbreds compared to purebred Angus for a range of traits including growth, carcass, and reproductive traits. This study aims to quantify breed and heterosis effects on maternal performance using genomics. Thirty Hereford and thirty Angus sires were mated to 1100 Angus heifers and cows in a large commercial herd run on pasture at Musselroe Bay, Tasmania, Australia. Approximately 1650 calves were born. Heifers were weaned, scanned for attainment of puberty prior to joining at approximately 15 months of age, joined, and then recorded for status of pregnancy, calving, lactating, 2nd pregnancy, and weaning of second calf. Heterozygosity effects were significant for heifer pre-joining weight and height as well as proportion pubertal. Breed differences were significant for the same traits plus pregnancy rate at second joining and proportion rearing two calves. Genetic parameters were reported for 13 traits. On average, higher genetic merit (Estimated Breeding Value, EBV percentile) Hereford bulls were used than Angus for growth and puberty, but they were similar for fat and reproduction. Days to calving BREEDPLAN EBVs of the sires were related to puberty and reproduction. Scrotal size BREEDPLAN EBVs of the sires were related to attainment of puberty genomic EBVs calculated. In summary, breed differences in growth and puberty were due to heterosis, but there was an advantage of Hereford genes for reproductive performance. Ongoing emphasis on selection for reduced days to calving and estimation of multi-breed EBVs is important.

2.
Animals (Basel) ; 8(3)2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29522470

ABSTRACT

Piglet movement from one sow to another, or fostering, is required in modern pig farming but there is little available literature on the most effective strategy. In this review, we focus on the behavioural and physiological mechanisms responsible for piglet survival and growth, and have identified six key principles. (1) Colostrum provides piglets with warmth, energy and immunity. It is most accessible during the first 12 h from the birth sow, therefore no piglet should be moved before this; (2) To ensure even intake of birth sow colostrum, techniques such as split suckling prior to piglet movement should be implemented; (3) Udder assessment for functional teats should occur at farrowing, with number of fostered piglets not exceeding teat number; (4) Primiparous sows should receive as many piglets as the udder allows to maximise mammary stimulation, although older parities should be assessed for rearing ability; (5) Piglet fostering should occur between 12 and 24 h and movement kept to a minimum to prevent transfer of disease; Litter outliers should be moved and relocated to a litter of similar size; (6) Piglet movement after 24 h should be minimised. When required, strategies such as nurse usage should be employed. These principles will result in improved farrowing house performance by increasing the litter weight weaned per sow.

SELECTION OF CITATIONS
SEARCH DETAIL
...