Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Neurobiol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812372

ABSTRACT

Spinal cord injury (SCI) resulting from trauma decreases the quality of human life. Numerous clues indicate that the limited endogenous regenerative potential is a result of the interplay between the inhibitory nature of mature nervous tissue and the inflammatory actions of immune and glial cells. Knowledge gained from comparing regeneration in adult and juvenile animals could draw attention to factors that should be removed or added for effective therapy in adults. Therefore, we generated a minimal SCI (mSCI) model with a comparable impact on the spinal cord of Wistar rats during adulthood, preadolescence, and the neonatal period. The mechanism of injury is based on unilateral incision with a 20 ga needle tip according to stereotaxic coordinates into the dorsal horn of the L4 lumbar spinal segment. The incision should harm a similar amount of gray matter on a coronal section in each group of experimental animals. According to our results, the impact causes mild injury with minimal adverse effects on the neurological functions of animals but still has a remarkable effect on nervous tissue and its cellular and humoral components. Testing the mSCI model in adults, preadolescents, and neonates revealed a rather anti-inflammatory response of immune cells and astrocytes at the lesion site, as well as increased proliferation in the central canal lining in neonates compared with adult animals. Our results indicate that developing nervous tissue could possess superior reparative potential and confirm the importance of comparative studies to advance in the field of neuroregeneration.

2.
Parasitology ; 150(7): 612-622, 2023 06.
Article in English | MEDLINE | ID: mdl-36938799

ABSTRACT

Dibothriocephalus ditremus and Dibothriocephalus latus are diphyllobothriidean tapeworms autochthonous to Europe. Their larval stages (plerocercoids) may seriously alter health of their intermediate fish hosts (D. ditremus) or cause intestinal diphyllobothriosis of the final human host (D. latus). Despite numerous data on the internal structure of broad tapeworms, many aspects of the morphology and physiology related to host­parasite co-existence remain unclear for these 2 species. The main objective of this work was to elucidate functional morphology of the frontal part (scolex) of plerocercoids, which is crucial for their establishment in fish tissues and for an early attachment in final hosts. The whole-mount specimens were labelled with different antibodies and examined by confocal microscope to capture their complex 3-dimensional microanatomy. Both species exhibited similar general pattern of immunofluorescent signal, although some differences were observed. In the nervous system, FMRF amide-like immunoreactivity (IR) occurred in the bi-lobed brain, 2 main nerve cords and surrounding nerve plexuses. Differences between the species were found in the structure of the brain commissures and the size of the sensilla. Synapsin IR examined in D. ditremus occurred mainly around FMRF amide-like IR brain lobes and main cords. The unexpected finding was an occurrence of FMRF amide-like IR in terminal reservoirs of secretory gland ducts and excretory canals, which has not been observed previously in any tapeworm species. This may indicate that secretory/excretory products, which play a key role in host­parasite relationships, are likely to contain FMRF amide-related peptide/s.


Subject(s)
Cestoda , Diphyllobothriasis , Diphyllobothrium , Animals , Humans , FMRFamide , Nervous System , Fishes
3.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768936

ABSTRACT

Neural precursors originating in the subventricular zone (SVZ), the largest neurogenic region of the adult brain, migrate several millimeters along a restricted migratory pathway, the rostral migratory stream (RMS), toward the olfactory bulb (OB), where they differentiate into interneurons and integrate into the local neuronal circuits. Migration of SVZ-derived neuroblasts in the adult brain differs in many aspects from that in the embryonic period. Unlike in that period, postnatally-generated neuroblasts in the SVZ are able to divide during migration along the RMS, as well as they migrate independently of radial glia. The homophilic mode of migration, i.e., using each other to move, is typical for neuroblast movement in the RMS. In addition, it has recently been demonstrated that specifically-arranged blood vessels navigate SVZ-derived neuroblasts to the OB and provide signals which promote migration. Here we review the development of vasculature in the presumptive neurogenic region of the rodent brain during the embryonic period as well as the development of the vascular scaffold guiding neuroblast migration in the postnatal period, and the significance of blood vessel reorganization during the early postnatal period for proper migration of RMS neuroblasts in adulthood.


Subject(s)
Brain/blood supply , Lateral Ventricles/physiology , Neovascularization, Physiologic/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Olfactory Bulb/physiology , Animals , Blood Vessels/metabolism , Brain/embryology , Cell Movement/physiology , Lateral Ventricles/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/cytology , Neurons/physiology , Olfactory Bulb/cytology
4.
J Comp Neurol ; 528(15): 2523-2550, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32212159

ABSTRACT

Cerebrospinal fluid contacting neurons (CSF-cNs) represent a specific class of neurons located in close vicinity of brain ventricles and central canal. In contrast with knowledge gained from other vertebrate species, we found that vast majority of CSF-cNs in the spinal cord of C57Bl/6N mice is located in ectopic distal ventral position. However, we found that small number of ectopic CSF-cNs is present also in spinal cord of other investigated experimental mice strains (C57Bl/6J, Balb/C) and mammalian species (Wistar rats, New Zealand White rabbits). Similarly, as the proximal populations, ectopic CSF-cNs retain PKD2L1-immunoreactivity and synaptic contacts with other neurons. On the other side, they show rather multipolar morphology lacking thick dendrite contacting central canal lumen. Ectopic CSF-cNs in the spinal cord of C57Bl/6N mice emerge during whole period devoted to production of CSF-cNs and reach their ventral destinations during first postnatal weeks. In order to identify major gene, whose impairment could trigger translocation of CSF-cNs outside the central canal area, we took advantage of close consanguinity of C57Bl/6J substrain with normal CSF-cN distribution and C57Bl/6N substrain with majority of CSF-cNs in ectopic position. Employing in silico analyses, we ranked polymorphisms in C57Bl/6N substrain and selected genes Crb1, Cyfip2, Adamts12, Plk1, and Herpud2 as the most probable candidates, whose product dysfunction might be responsible for the ectopic distribution of CSF-cNs. Furthermore, segregation analysis of F2 progeny of parental C57Bl/6N and Balb/C mice revealed that polymorphic loci of Crb1 and Cyfip2 underlie the ectopic position of CSF-cNs in the spinal cord of C57Bl/6N mice.


Subject(s)
Cerebrospinal Fluid/physiology , Neurons/metabolism , Neurons/physiology , Spinal Cord/physiology , Spinal Cord/ultrastructure , Animals , Choristoma/genetics , Choristoma/pathology , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pregnancy , Rabbits , Rats , Rats, Wistar , Species Specificity
5.
J Comp Neurol ; 525(3): 693-707, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27503700

ABSTRACT

According to previous opinion, the derivation of neurons and glia from the central canal (CC) lining of the spinal cord in rodents should occur in the embryonic period. Reports of the mitotic activity observed in the lining during postnatal development have often been contradictory, and proliferation was ascribed to the generation of ependymocytes, which are necessary for the elongation of CC walls. Our study quantifies the intensity of proliferation and determines the cellularity of the CC lining in reference to lumbar spinal segment L4 during the postnatal development of rats. The presence of dividing cells peaks in the CC lining on postnatal day 8 (P8), with division occurring in 19.2% ± 3.2% of cells. In adult rats, 3.6% ± 0.9% of cells still proliferate, whereas, in mice, 10.3% ± 2.3% of cells at P8 and only 0.6% ± 0.2% of cells in the CC lining in adulthood are proliferating. In the rat, the length of the cell cycle increases from 100.3 ± 35.7 hours at P1 to 401.4 ± 80.6 hours at P43, with a sudden extension between P15 and P22. Despite the intensive proliferation, the total cellularity of the CC lining at the L4 spinal segment significantly descended in from P8 to P15. According to our calculations, the estimated cellularity was significantly higher compared with the measured cellularity of the CC lining at P15. Our results indicate that CC lining serves as a source of cells beyond ependymal cells during the first postnatal weeks of the rat. J. Comp. Neurol. 525:693-707, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Proliferation , Spinal Cord/cytology , Spinal Cord/growth & development , Animals , Animals, Newborn , Bromodeoxyuridine , Cell Cycle , Ependyma/cytology , Ependyma/growth & development , Fluorescent Antibody Technique , Ki-67 Antigen/metabolism , Lumbar Vertebrae , Mice, Inbred BALB C , Microscopy, Confocal , Neuroglia/cytology , Neurons/cytology , Rats, Wistar , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...