Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 34(4): 747-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24556263

ABSTRACT

This research was aimed at assessing the fertilizer quality and public health implications of using digestate biofertilizer from the anaerobic digestion of food wastes and human excreta. Twelve (12) kg of food wastes and 3kg of human excreta were mixed with water in a 1:1 w/v to make 30-l slurry that was fed into the anaerobic digester to ferment for 60days at mesophilic temperature (22-31°C). Though BOD, COD, organic carbon and ash content in the feedstock were reduced after anaerobic digestion by 50.0%, 10.6%, 74.3% and 1.5% respectively, nitrogen, pH and total solids however increased by 12.1%, 42.5% and 12.4% respectively. The C/N ratios of the feedstock and compost are 135:1 and 15.8:1. The residual total coliforms of 2.10×10(8)CFU/100ml in the digestate was above tolerable limits for direct application on farmlands. Microbial analysis of the digestate biofertilizer revealed the presence of Pseudomonas, Klebsiella, Clostridium, Bacillus, Bacteroides, Penicillum, Salmollena, and Aspergillus. Klebsiella, Bacillus, Pseudomonas, Penicillum and Aspergillus can boost the efficiency of the biofertilizer through nitrogen fixation and nutrient solubility in soils but Klebsiella again and Salmollena are potential health risks to end users. Further treatment of the digestate for more efficient destruction of pathogens is advised.


Subject(s)
Fertilizers/microbiology , Garbage , Sewage , Anaerobiosis , Bioreactors , Fertilizers/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...